González Acosta, José León; Vardon, Philip J.; Remmerswaal, Guido; Hicks, Michael A. An investigation of stress inaccuracies and proposed solution in the material point method. (English) Zbl 1477.74118 Comput. Mech. 65, No. 2, 555-581 (2020). MSC: 74S99 PDF BibTeX XML Cite \textit{J. L. González Acosta} et al., Comput. Mech. 65, No. 2, 555--581 (2020; Zbl 1477.74118) Full Text: DOI OpenURL
Cervera, Miguel; Wu, Jian-Ying; Chiumenti, Michele; Kim, Sungchul Strain localization analysis of Hill’s orthotropic elastoplasticity: analytical results and numerical verification. (English) Zbl 1481.74084 Comput. Mech. 65, No. 2, 533-554 (2020). MSC: 74C05 74E10 74S05 PDF BibTeX XML Cite \textit{M. Cervera} et al., Comput. Mech. 65, No. 2, 533--554 (2020; Zbl 1481.74084) Full Text: DOI Link OpenURL
Betsch, Peter; Schiebl, Mark GENERIC-based formulation and discretization of initial boundary value problems for finite strain thermoelasticity. (English) Zbl 1486.74128 Comput. Mech. 65, No. 2, 503-531 (2020). MSC: 74S05 74F05 74B20 PDF BibTeX XML Cite \textit{P. Betsch} and \textit{M. Schiebl}, Comput. Mech. 65, No. 2, 503--531 (2020; Zbl 1486.74128) Full Text: DOI OpenURL
Fürstenau, Jan-Philipp; Weißenfels, Christian; Wriggers, Peter Free surface tension in incompressible smoothed particle hydrodynamcis (ISPH). (English) Zbl 1490.76167 Comput. Mech. 65, No. 2, 487-502 (2020). MSC: 76M28 76D45 76B45 76T10 PDF BibTeX XML Cite \textit{J.-P. Fürstenau} et al., Comput. Mech. 65, No. 2, 487--502 (2020; Zbl 1490.76167) Full Text: DOI OpenURL
Liu, Qingxia; Zhuang, Pinghui; Liu, Fawang; Lai, Junjiang; Anh, Vo; Chen, Shanzhen An investigation of radial basis functions for fractional derivatives and their applications. (English) Zbl 1496.76111 Comput. Mech. 65, No. 2, 475-486 (2020). MSC: 76M99 74S40 26A33 PDF BibTeX XML Cite \textit{Q. Liu} et al., Comput. Mech. 65, No. 2, 475--486 (2020; Zbl 1496.76111) Full Text: DOI OpenURL
Garikapati, Hasini; Zlotnik, Sergio; Díez, Pedro; Verhoosel, Clemens V.; van Brummelen, E. Harald A proper generalized decomposition (PGD) approach to crack propagation in brittle materials: with application to random field material properties. (English) Zbl 1489.74065 Comput. Mech. 65, No. 2, 451-473 (2020). MSC: 74S60 74R10 74E35 PDF BibTeX XML Cite \textit{H. Garikapati} et al., Comput. Mech. 65, No. 2, 451--473 (2020; Zbl 1489.74065) Full Text: DOI OpenURL
Düster, Alexander; Allix, Olivier Selective enrichment of moment fitting and application to cut finite elements and cells. (English) Zbl 1489.74053 Comput. Mech. 65, No. 2, 429-450 (2020). MSC: 74S05 74S99 74K10 PDF BibTeX XML Cite \textit{A. Düster} and \textit{O. Allix}, Comput. Mech. 65, No. 2, 429--450 (2020; Zbl 1489.74053) Full Text: DOI OpenURL
Gebhardt, Cristian Guillermo; Romero, Ignacio; Rolfes, Raimund A new conservative/dissipative time integration scheme for nonlinear mechanical systems. (English) Zbl 1504.74080 Comput. Mech. 65, No. 2, 405-427 (2020). MSC: 74S99 70-08 PDF BibTeX XML Cite \textit{C. G. Gebhardt} et al., Comput. Mech. 65, No. 2, 405--427 (2020; Zbl 1504.74080) Full Text: DOI arXiv OpenURL
Yu, Yuxuan; Zhang, Yongjie Jessica; Takizawa, Kenji; Tezduyar, Tayfun E.; Sasaki, Takafumi Anatomically realistic lumen motion representation in patient-specific space-time isogeometric flow analysis of coronary arteries with time-dependent medical-image data. (English) Zbl 1490.76260 Comput. Mech. 65, No. 2, 395-404 (2020). MSC: 76Z05 76M99 65D07 65D18 92C35 92C55 PDF BibTeX XML Cite \textit{Y. Yu} et al., Comput. Mech. 65, No. 2, 395--404 (2020; Zbl 1490.76260) Full Text: DOI OpenURL
Özcan, M.; Cakmakci, M.; Temizer, İ. Smart composites with tunable stress-strain curves. (English) Zbl 1490.74022 Comput. Mech. 65, No. 2, 375-394 (2020). MSC: 74E30 74M05 74S05 74M25 PDF BibTeX XML Cite \textit{M. Özcan} et al., Comput. Mech. 65, No. 2, 375--394 (2020; Zbl 1490.74022) Full Text: DOI OpenURL
Chasapi, Margarita; Klinkel, Sven Geometrically nonlinear analysis of solids using an isogeometric formulation in boundary representation. (English) Zbl 1490.74116 Comput. Mech. 65, No. 2, 355-373 (2020). MSC: 74S22 74S05 PDF BibTeX XML Cite \textit{M. Chasapi} and \textit{S. Klinkel}, Comput. Mech. 65, No. 2, 355--373 (2020; Zbl 1490.74116) Full Text: DOI OpenURL
Cho, Haeseong; Shin, Sangjoon; Kim, Haedong; Cho, Maenghyo Enhanced model-order reduction approach via online adaptation for parametrized nonlinear structural problems. (English) Zbl 1490.74121 Comput. Mech. 65, No. 2, 331-353 (2020). MSC: 74S99 74S05 74K99 PDF BibTeX XML Cite \textit{H. Cho} et al., Comput. Mech. 65, No. 2, 331--353 (2020; Zbl 1490.74121) Full Text: DOI OpenURL
La Spina, Andrea; Giacomini, Matteo; Huerta, Antonio Hybrid coupling of CG and HDG discretizations based on Nitsche’s method. (English) Zbl 1490.74107 Comput. Mech. 65, No. 2, 311-330 (2020). MSC: 74S05 74F05 74B05 PDF BibTeX XML Cite \textit{A. La Spina} et al., Comput. Mech. 65, No. 2, 311--330 (2020; Zbl 1490.74107) Full Text: DOI arXiv OpenURL
Yin, Bo; Kaliske, Michael Fracture simulation of viscoelastic polymers by the phase-field method. (English) Zbl 1490.74100 Comput. Mech. 65, No. 2, 293-309 (2020). MSC: 74R20 74D10 74S99 PDF BibTeX XML Cite \textit{B. Yin} and \textit{M. Kaliske}, Comput. Mech. 65, No. 2, 293--309 (2020; Zbl 1490.74100) Full Text: DOI OpenURL
Panneerselvam, Karthikeyan; Rahul; De, Suvranu A constrained spline dynamics (CSD) method for interactive simulation of elastic rods. (English) Zbl 1489.74061 Comput. Mech. 65, No. 2, 269-291 (2020). MSC: 74S22 74K10 PDF BibTeX XML Cite \textit{K. Panneerselvam} et al., Comput. Mech. 65, No. 2, 269--291 (2020; Zbl 1489.74061) Full Text: DOI Link OpenURL