Alam, Jahangir; Murtaza, M. G.; Tzirtzilakis, E. E.; Ferdows, M. Application of biomagnetic fluid dynamics modeling for simulation of flow with magnetic particles and variable fluid properties over a stretching cylinder. (English) Zbl 07538470 Math. Comput. Simul. 199, 438-462 (2022). MSC: 76-XX 92-XX PDF BibTeX XML Cite \textit{J. Alam} et al., Math. Comput. Simul. 199, 438--462 (2022; Zbl 07538470) Full Text: DOI
Wang, Qiang; Wu, Jie; Zhao, Nenggui Optimal operational policies of a dual-channel supply chain considering return service. (English) Zbl 07538469 Math. Comput. Simul. 199, 414-437 (2022). MSC: 90-XX 91-XX PDF BibTeX XML Cite \textit{Q. Wang} et al., Math. Comput. Simul. 199, 414--437 (2022; Zbl 07538469) Full Text: DOI
Nikan, O.; Avazzadeh, Z. A locally stabilized radial basis function partition of unity technique for the sine-Gordon system in nonlinear optics. (English) Zbl 07538468 Math. Comput. Simul. 199, 394-413 (2022). MSC: 65-XX 78-XX PDF BibTeX XML Cite \textit{O. Nikan} and \textit{Z. Avazzadeh}, Math. Comput. Simul. 199, 394--413 (2022; Zbl 07538468) Full Text: DOI
Tanveer, Anum; Khan, Mair; Salahuddin, T.; Al Alwan, Basem; Amari, Abdelfattah Dynamics of Walters’ B fluid due to periodic wave in a convectively heated channel with internal heat generation. (English) Zbl 07538467 Math. Comput. Simul. 199, 374-393 (2022). MSC: 76-XX 92-XX PDF BibTeX XML Cite \textit{A. Tanveer} et al., Math. Comput. Simul. 199, 374--393 (2022; Zbl 07538467) Full Text: DOI
Hoang, Manh Tuan Positivity and boundedness preserving nonstandard finite difference schemes for solving Volterra’s population growth model. (English) Zbl 07538466 Math. Comput. Simul. 199, 359-373 (2022). MSC: 65-XX 92-XX PDF BibTeX XML Cite \textit{M. T. Hoang}, Math. Comput. Simul. 199, 359--373 (2022; Zbl 07538466) Full Text: DOI
Li, Yuping; Yang, Zhanwen; Liang, Hui Analysis of collocation methods for a class of third-kind auto-convolution Volterra integral equations. (English) Zbl 07538465 Math. Comput. Simul. 199, 341-358 (2022). MSC: 65-XX 45-XX PDF BibTeX XML Cite \textit{Y. Li} et al., Math. Comput. Simul. 199, 341--358 (2022; Zbl 07538465) Full Text: DOI
Albi, Giacomo; Chignola, Roberto; Ferrarese, Federica Efficient ensemble stochastic algorithms for agent-based models with spatial predator-prey dynamics. (English) Zbl 07538464 Math. Comput. Simul. 199, 317-340 (2022). MSC: 92-XX 91-XX PDF BibTeX XML Cite \textit{G. Albi} et al., Math. Comput. Simul. 199, 317--340 (2022; Zbl 07538464) Full Text: DOI arXiv
Zhu, Dejun Practical exponential stability of stochastic delayed systems with G-Brownian motion via vector G-Lyapunov function. (English) Zbl 07538463 Math. Comput. Simul. 199, 307-316 (2022). MSC: 93-XX 34-XX PDF BibTeX XML Cite \textit{D. Zhu}, Math. Comput. Simul. 199, 307--316 (2022; Zbl 07538463) Full Text: DOI
Kumar, Sunil; Sumit; Vigo-Aguiar, Jesus A high order convergent numerical method for singularly perturbed time dependent problems using mesh equidistribution. (English) Zbl 07538462 Math. Comput. Simul. 199, 287-306 (2022). MSC: 65-XX 76-XX PDF BibTeX XML Cite \textit{S. Kumar} et al., Math. Comput. Simul. 199, 287--306 (2022; Zbl 07538462) Full Text: DOI
Zguaid, Khalid; El Alaoui, Fatima-Zahrae Regional boundary observability for Riemann-Liouville linear fractional evolution systems. (English) Zbl 07538461 Math. Comput. Simul. 199, 272-286 (2022). MSC: 35-XX 93-XX PDF BibTeX XML Cite \textit{K. Zguaid} and \textit{F.-Z. El Alaoui}, Math. Comput. Simul. 199, 272--286 (2022; Zbl 07538461) Full Text: DOI
Inage, Sin-ichi; Hebishima, Hana Application of Monte Carlo stochastic optimization (MOST) to deep learning. (English) Zbl 07538460 Math. Comput. Simul. 199, 257-271 (2022). MSC: 65-XX 90-XX PDF BibTeX XML Cite \textit{S.-i. Inage} and \textit{H. Hebishima}, Math. Comput. Simul. 199, 257--271 (2022; Zbl 07538460) Full Text: DOI arXiv
Liseikin, V. D. Comments on a numerical algorithm for problems having interior power-of-type-2 layers. (English) Zbl 07538459 Math. Comput. Simul. 199, 253-256 (2022). MSC: 65-XX 76-XX PDF BibTeX XML Cite \textit{V. D. Liseikin}, Math. Comput. Simul. 199, 253--256 (2022; Zbl 07538459) Full Text: DOI
da Silva, L. P.; Marchi, C. H.; Meneguette, M.; Foltran, A. C. Robust RRE technique for increasing the order of accuracy of SPH numerical solutions. (English) Zbl 07538458 Math. Comput. Simul. 199, 231-252 (2022). MSC: 76-XX 65-XX PDF BibTeX XML Cite \textit{L. P. da Silva} et al., Math. Comput. Simul. 199, 231--252 (2022; Zbl 07538458) Full Text: DOI
Tocino, A.; Komori, Y.; Mitsui, T. Integration of the stochastic underdamped harmonic oscillator by the \(\theta \)-method. (English) Zbl 07538457 Math. Comput. Simul. 199, 217-230 (2022). MSC: 81-XX 82-XX PDF BibTeX XML Cite \textit{A. Tocino} et al., Math. Comput. Simul. 199, 217--230 (2022; Zbl 07538457) Full Text: DOI
Lam, Nicholas N.; Docherty, Paul D.; Murray, Rua Practical identifiability of parametrised models: a review of benefits and limitations of various approaches. (English) Zbl 07538456 Math. Comput. Simul. 199, 202-216 (2022). MSC: 92-XX 62-XX PDF BibTeX XML Cite \textit{N. N. Lam} et al., Math. Comput. Simul. 199, 202--216 (2022; Zbl 07538456) Full Text: DOI
Peng, Q.; Vermolen, F. J. Point forces in elasticity equation and their alternatives in multi dimensions. (English) Zbl 07538455 Math. Comput. Simul. 199, 182-201 (2022). MSC: 92-XX 76-XX PDF BibTeX XML Cite \textit{Q. Peng} and \textit{F. J. Vermolen}, Math. Comput. Simul. 199, 182--201 (2022; Zbl 07538455) Full Text: DOI arXiv
El-Amrani, Mofdi; Khouya, Bassou; Seaid, Mohammed A semi-Lagrangian Bernstein-Bézier finite element method for two-dimensional coupled Burgers’ equations at high Reynolds numbers. (English) Zbl 07538454 Math. Comput. Simul. 199, 160-181 (2022). MSC: 65-XX 76-XX PDF BibTeX XML Cite \textit{M. El-Amrani} et al., Math. Comput. Simul. 199, 160--181 (2022; Zbl 07538454) Full Text: DOI
Tafakkori-Bafghi, M.; Loghmani, G. B.; Heydari, M. Numerical solution of two-point nonlinear boundary value problems via Legendre-Picard iteration method. (English) Zbl 07538453 Math. Comput. Simul. 199, 133-159 (2022). MSC: 65-XX 76-XX PDF BibTeX XML Cite \textit{M. Tafakkori-Bafghi} et al., Math. Comput. Simul. 199, 133--159 (2022; Zbl 07538453) Full Text: DOI
Bai, Feng; Wang, Yi A reduced order modeling method based on GNAT-embedded hybrid snapshot simulation. (English) Zbl 07538452 Math. Comput. Simul. 199, 100-132 (2022). MSC: 65-XX 76-XX PDF BibTeX XML Cite \textit{F. Bai} and \textit{Y. Wang}, Math. Comput. Simul. 199, 100--132 (2022; Zbl 07538452) Full Text: DOI
Abouelregal, Ahmed E.; Mohammed, Fawzy A.; Benhamed, Moez; Zakria, Adam; Ahmed, Ibrahim-Elkhalil Vibrations of axially excited rotating micro-beams heated by a high-intensity laser in light of a thermo-elastic model including the memory-dependent derivative. (English) Zbl 07538451 Math. Comput. Simul. 199, 81-99 (2022). MSC: 74-XX 78-XX PDF BibTeX XML Cite \textit{A. E. Abouelregal} et al., Math. Comput. Simul. 199, 81--99 (2022; Zbl 07538451) Full Text: DOI
Fahimi-khalilabad, Iraj; Irandoust-pakchin, Safar; Abdi-mazraeh, Somayeh High-order finite difference method based on linear barycentric rational interpolation for Caputo type sub-diffusion equation. (English) Zbl 07538450 Math. Comput. Simul. 199, 60-80 (2022). MSC: 65-XX 76-XX PDF BibTeX XML Cite \textit{I. Fahimi-khalilabad} et al., Math. Comput. Simul. 199, 60--80 (2022; Zbl 07538450) Full Text: DOI
Wang, Furong; Yang, Xuehua; Zhang, Haixiang; Wu, Lijiao A time two-grid algorithm for the two dimensional nonlinear fractional PIDE with a weakly singular kernel. (English) Zbl 07538449 Math. Comput. Simul. 199, 38-59 (2022). MSC: 65-XX 76-XX PDF BibTeX XML Cite \textit{F. Wang} et al., Math. Comput. Simul. 199, 38--59 (2022; Zbl 07538449) Full Text: DOI
Taher, Anis Haytham Saleh An efficient numerical technique for estimating eigenvalues of second-order non-self-adjoint Sturm-Liouville problems. (English) Zbl 07538448 Math. Comput. Simul. 199, 25-37 (2022). MSC: 65-XX 76-XX PDF BibTeX XML Cite \textit{A. H. S. Taher}, Math. Comput. Simul. 199, 25--37 (2022; Zbl 07538448) Full Text: DOI
Sinhababu, Arijit; Bhattacharya, Anirban A pseudo-spectral based efficient volume penalization scheme for Cahn-Hilliard equation in complex geometries. (English) Zbl 07538447 Math. Comput. Simul. 199, 1-24 (2022). MSC: 65-XX 76-XX PDF BibTeX XML Cite \textit{A. Sinhababu} and \textit{A. Bhattacharya}, Math. Comput. Simul. 199, 1--24 (2022; Zbl 07538447) Full Text: DOI