×

Discrete Riemannian geometry. (English) Zbl 0951.53023

Authors’ abstract: “Within the framework of noncommutative geometry, we develop an analog of (pseudo-) Riemannian geometry on finite and discrete sets. On a finite set, there is a counterpart of the continuum metric tensor with a simple geometric interpretation. The latter is based on a correspondence between first-order differential calculi and digraphs (the vertices of the latter are given by the elements of the finite set). Arrows originating from a vertex span its (co)tangent space. If the metric is to measure length and angles at some point, it has to be taken as an element of the left-linear tensor product of the space of 1-forms with itself, and not as an element of the (nonlocal) tensor product over the algebra of functions, as considered previously by several authors. It turns out that linear connections can always be extended to this left tensor product, so that metric compatibility can be defined in the same way as in continuum Riemannian geometry. In particular, in the case of the universal differential calculus on a finite set, the Euclidean geometry of polyhedra is recovered from conditions of metric compatibility and vanishing torsion. In our rather general framework (which also comprises structures which are far away from continuum differential geometry), there is, in general, nothing like a Ricci tensor or a curvature scalar. Because of the nonlocality of tensor products (over the algebra of functions) of forms, corresponding components (with respect to some module basis) turn out to be rather nonlocal objects. But one can make use of the parallel transport associated with a connection to “localize” such objects, and in certain cases there is a distinguished way to achieve this. In particular, this leads to covariant components of the curvature tensor which allow a contraction to a Ricci tensor. Several examples are worked out to illustrate the procedure. Furthermore, in the case of a differential calculus associated with a hypercubic lattice we propose a new discrete analogue of the (vacuum) Einstein equations”.

MSC:

53C20 Global Riemannian geometry, including pinching
83C27 Lattice gravity, Regge calculus and other discrete methods in general relativity and gravitational theory
53C50 Global differential geometry of Lorentz manifolds, manifolds with indefinite metrics
58J42 Noncommutative global analysis, noncommutative residues
81R60 Noncommutative geometry in quantum theory
83C65 Methods of noncommutative geometry in general relativity
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] DOI: 10.1016/0370-2693(92)91561-M · doi:10.1016/0370-2693(92)91561-M
[2] DOI: 10.1088/0305-4470/27/9/028 · Zbl 0843.58004 · doi:10.1088/0305-4470/27/9/028
[3] DOI: 10.1063/1.530638 · Zbl 0822.58004 · doi:10.1063/1.530638
[4] DOI: 10.1063/1.530996 · Zbl 0933.94046 · doi:10.1063/1.530996
[5] DOI: 10.1088/0305-4470/29/11/010 · Zbl 0904.58004 · doi:10.1088/0305-4470/29/11/010
[6] DOI: 10.1088/0305-4470/26/8/019 · Zbl 0789.58010 · doi:10.1088/0305-4470/26/8/019
[7] DOI: 10.1088/0305-4470/29/16/022 · Zbl 0899.58022 · doi:10.1088/0305-4470/29/16/022
[8] DOI: 10.1023/A:1026684917059 · Zbl 0934.58005 · doi:10.1023/A:1026684917059
[9] DOI: 10.1088/0264-9381/11/8/017 · Zbl 0812.53082 · doi:10.1088/0264-9381/11/8/017
[10] A. Sitarz, ”On some aspects of linear connections in noncommutative geometry,” hep-th/9503103. · Zbl 0812.53082 · doi:10.1088/0264-9381/11/8/017
[11] DOI: 10.1007/BF00750842 · Zbl 0835.58003 · doi:10.1007/BF00750842
[12] DOI: 10.1007/s002200050086 · Zbl 0888.17007 · doi:10.1007/s002200050086
[13] A. Dimakis, ”A note on connections and bimodules,” q-alg/9603001.
[14] A. Dimakis and F. Müller-Hoissen, ”Deformations of classical geometries and integrable systems,” physics/9712002;
[15] A. Dimakis and F. Müller-Hoissen, ”Noncommutative geometry and a class of completely integrable models,” math-ph/9809023. · Zbl 0955.37049
[16] DOI: 10.1063/1.532172 · Zbl 0892.58003 · doi:10.1063/1.532172
[17] DOI: 10.1063/1.532014 · Zbl 0878.58003 · doi:10.1063/1.532014
[18] DOI: 10.1088/0305-4470/28/11/019 · Zbl 0864.58001 · doi:10.1088/0305-4470/28/11/019
[19] L. Brewin, ”Riemann normal coordinates, smooth lattices and numerical relativity,” gr-qc/9701057. · Zbl 0936.83010
[20] DOI: 10.1007/BF02733251 · doi:10.1007/BF02733251
[21] DOI: 10.1007/BF02733251 · doi:10.1007/BF02733251
[22] DOI: 10.1063/1.523124 · doi:10.1063/1.523124
[23] DOI: 10.1063/1.523124 · doi:10.1063/1.523124
[24] DOI: 10.1088/0264-9381/6/3/009 · Zbl 0678.53075 · doi:10.1088/0264-9381/6/3/009
[25] DOI: 10.1088/0264-9381/6/3/009 · Zbl 0678.53075 · doi:10.1088/0264-9381/6/3/009
[26] DOI: 10.1088/0264-9381/6/3/009 · Zbl 0678.53075 · doi:10.1088/0264-9381/6/3/009
[27] DOI: 10.1088/0264-9381/6/3/009 · Zbl 0678.53075 · doi:10.1088/0264-9381/6/3/009
[28] DOI: 10.1088/0264-9381/6/3/009 · Zbl 0678.53075 · doi:10.1088/0264-9381/6/3/009
[29] DOI: 10.1088/0264-9381/6/3/009 · Zbl 0678.53075 · doi:10.1088/0264-9381/6/3/009
[30] DOI: 10.1088/0264-9381/6/3/009 · Zbl 0678.53075 · doi:10.1088/0264-9381/6/3/009
[31] DOI: 10.1088/0264-9381/6/3/009 · Zbl 0678.53075 · doi:10.1088/0264-9381/6/3/009
[32] R. Loll, ”Discrete approaches to quantum gravity in four dimensions,” gr-qc/9805049. · Zbl 0678.53075 · doi:10.1088/0264-9381/6/3/009
[33] DOI: 10.1088/0264-9381/14/1A/006 · Zbl 0866.58077 · doi:10.1088/0264-9381/14/1A/006
[34] DOI: 10.1088/0264-9381/14/1A/006 · Zbl 0866.58077 · doi:10.1088/0264-9381/14/1A/006
[35] M. P. Reisenberger, ”A lattice worldsheet sum for 4-d Euclidean general relativity,” gr-qc/9711052. · Zbl 0866.58077 · doi:10.1088/0264-9381/14/1A/006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.