Ding, Yanheng; Yu, Yuanyang; Zhao, Fukun \(L^2\)-normalized solitary wave solutions of a nonlinear Dirac equation. (English) Zbl 1504.35418 J. Geom. Anal. 33, No. 2, Paper No. 69, 25 p. (2023). MSC: 35Q40 35Q41 49J35 35C08 35A15 PDF BibTeX XML Cite \textit{Y. Ding} et al., J. Geom. Anal. 33, No. 2, Paper No. 69, 25 p. (2023; Zbl 1504.35418) Full Text: DOI OpenURL
Clapp, Mónica; Soares, Mayra Energy estimates for seminodal solutions to an elliptic system with mixed couplings. (English) Zbl 07630745 NoDEA, Nonlinear Differ. Equ. Appl. 30, No. 1, Paper No. 11, 33 p. (2023). Reviewer: Jesús Hernández (Madrid) MSC: 35J47 35J61 35A01 PDF BibTeX XML Cite \textit{M. Clapp} and \textit{M. Soares}, NoDEA, Nonlinear Differ. Equ. Appl. 30, No. 1, Paper No. 11, 33 p. (2023; Zbl 07630745) Full Text: DOI arXiv OpenURL
Luo, Yuanyuan; Gao, Dongmei; Wang, Jun Existence of a ground state solution for the Choquard equation with nonperiodic potentials. (English) Zbl 07605448 Acta Math. Sci., Ser. B, Engl. Ed. 43, No. 1, 303-323 (2023). MSC: 35J60 PDF BibTeX XML Cite \textit{Y. Luo} et al., Acta Math. Sci., Ser. B, Engl. Ed. 43, No. 1, 303--323 (2023; Zbl 07605448) Full Text: DOI OpenURL
Deng, Shengbing; Yu, Junwei On a class of singular Hamiltonian Choquard-type elliptic systems with critical exponential growth. (English) Zbl 07669102 J. Math. Phys. 63, No. 12, Article ID 121501, 22 p. (2022). MSC: 35J60 35J50 35J20 35A01 35B33 PDF BibTeX XML Cite \textit{S. Deng} and \textit{J. Yu}, J. Math. Phys. 63, No. 12, Article ID 121501, 22 p. (2022; Zbl 07669102) Full Text: DOI arXiv OpenURL
Zhong, Tao; Huang, Xianjiu; Chen, Jianhua A class of Kirchhoff-type problems involving the concave-convex nonlinearities and steep potential Well. (English) Zbl 1501.35213 Bull. Malays. Math. Sci. Soc. (2) 45, No. 6, 3469-3498 (2022). MSC: 35J62 35A01 35B40 PDF BibTeX XML Cite \textit{T. Zhong} et al., Bull. Malays. Math. Sci. Soc. (2) 45, No. 6, 3469--3498 (2022; Zbl 1501.35213) Full Text: DOI OpenURL
Gao, Fashun; Moroz, Vitaly; Yang, Minbo; Zhao, Shunneng Construction of infinitely many solutions for a critical Choquard equation via local Pohožaev identities. (English) Zbl 1501.35192 Calc. Var. Partial Differ. Equ. 61, No. 6, Paper No. 222, 47 p. (2022). MSC: 35J61 35A01 35A15 PDF BibTeX XML Cite \textit{F. Gao} et al., Calc. Var. Partial Differ. Equ. 61, No. 6, Paper No. 222, 47 p. (2022; Zbl 1501.35192) Full Text: DOI arXiv OpenURL
Yang, Heng Schrödinger-Poisson system with zero mass and convolution nonlinearity in \(\mathbb{R}^2\). (English) Zbl 1498.35519 Asymptotic Anal. 130, No. 1-2, 1-21 (2022). MSC: 35Q55 35A01 35R09 35D30 35B38 PDF BibTeX XML Cite \textit{H. Yang}, Asymptotic Anal. 130, No. 1--2, 1--21 (2022; Zbl 1498.35519) Full Text: DOI OpenURL
Yuan, Shuai; Tang, Xianhua; Zhang, Jian; Zhang, Limin Semiclassical states of fractional Choquard equations with exponential critical growth. (English) Zbl 1498.35601 J. Geom. Anal. 32, No. 12, Paper No. 290, 40 p. (2022). MSC: 35R11 35A15 35B38 35J61 PDF BibTeX XML Cite \textit{S. Yuan} et al., J. Geom. Anal. 32, No. 12, Paper No. 290, 40 p. (2022; Zbl 1498.35601) Full Text: DOI OpenURL
Yu, Yuanyang Bifurcation solutions for a nonlinear Dirac equation. (English) Zbl 1498.35042 Appl. Math. Lett. 134, Article ID 108306, 7 p. (2022). MSC: 35B32 35A15 35F50 35Q41 PDF BibTeX XML Cite \textit{Y. Yu}, Appl. Math. Lett. 134, Article ID 108306, 7 p. (2022; Zbl 1498.35042) Full Text: DOI OpenURL
Jin, Zhen-Feng; Sun, Hong-Rui; Zhang, Jianjun Existence of ground state solutions for critical fractional Choquard equations involving periodic magnetic field. (English) Zbl 1496.35430 Adv. Nonlinear Stud. 22, 372-389 (2022). MSC: 35R11 35A15 35J61 35R09 58E05 PDF BibTeX XML Cite \textit{Z.-F. Jin} et al., Adv. Nonlinear Stud. 22, 372--389 (2022; Zbl 1496.35430) Full Text: DOI OpenURL
Yao, Shuai; Sun, Juntao; Wu, Tsung-fang Positive solutions to a class of Choquard type equations with a competing perturbation. (English) Zbl 1497.35261 J. Math. Anal. Appl. 516, No. 1, Article ID 126469, 20 p. (2022). MSC: 35J91 35J05 35A01 PDF BibTeX XML Cite \textit{S. Yao} et al., J. Math. Anal. Appl. 516, No. 1, Article ID 126469, 20 p. (2022; Zbl 1497.35261) Full Text: DOI OpenURL
He, Xiaoming; Rădulescu, Vicenţiu D.; Zou, Wenming Normalized ground states for the critical fractional Choquard equation with a local perturbation. (English) Zbl 1495.35191 J. Geom. Anal. 32, No. 10, Paper No. 252, 51 p. (2022). MSC: 35R11 35A15 35B33 35J20 35J61 35Q55 46N50 81Q05 PDF BibTeX XML Cite \textit{X. He} et al., J. Geom. Anal. 32, No. 10, Paper No. 252, 51 p. (2022; Zbl 1495.35191) Full Text: DOI OpenURL
Yao, Shuai; Chen, Haibo; Rădulescu, D.; Sun, Juntao Normalized solutions for lower critical Choquard equations with critical Sobolev perturbation. (English) Zbl 1497.35145 SIAM J. Math. Anal. 54, No. 3, 3696-3723 (2022). MSC: 35J20 35J61 35Q40 PDF BibTeX XML Cite \textit{S. Yao} et al., SIAM J. Math. Anal. 54, No. 3, 3696--3723 (2022; Zbl 1497.35145) Full Text: DOI OpenURL
Zhang, Guoqing; Li, Yawen Normalized ground state traveling solitary waves for the half-wave equations with combined nonlinearities. (English) Zbl 1492.35323 Z. Angew. Math. Phys. 73, No. 4, Paper No. 142, 27 p. (2022). MSC: 35Q55 35Q41 35C07 35C08 35A01 35B33 49J35 PDF BibTeX XML Cite \textit{G. Zhang} and \textit{Y. Li}, Z. Angew. Math. Phys. 73, No. 4, Paper No. 142, 27 p. (2022; Zbl 1492.35323) Full Text: DOI OpenURL
Wei, Juncheng; Wu, Yuanze Normalized solutions for Schrödinger equations with critical Sobolev exponent and mixed nonlinearities. (English) Zbl 1500.35114 J. Funct. Anal. 283, No. 6, Article ID 109574, 46 p. (2022). Reviewer: Sergey G. Pyatkov (Khanty-Mansiysk) MSC: 35J10 35J61 35A01 35J20 PDF BibTeX XML Cite \textit{J. Wei} and \textit{Y. Wu}, J. Funct. Anal. 283, No. 6, Article ID 109574, 46 p. (2022; Zbl 1500.35114) Full Text: DOI arXiv OpenURL
Wang, Li; Cheng, Kun; Wang, Jixiu The multiplicity and concentration of positive solutions for the Kirchhoff-Choquard equation with magnetic fields. (English) Zbl 1499.35021 Acta Math. Sci., Ser. B, Engl. Ed. 42, No. 4, 1453-1484 (2022). MSC: 35A15 35B25 35R11 58E05 PDF BibTeX XML Cite \textit{L. Wang} et al., Acta Math. Sci., Ser. B, Engl. Ed. 42, No. 4, 1453--1484 (2022; Zbl 1499.35021) Full Text: DOI OpenURL
Quittner, Pavol Liouville theorem and a priori estimates of radial solutions for a non-cooperative elliptic system. (English) Zbl 1498.35229 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 222, Article ID 112971, 11 p. (2022). Reviewer: Florin Catrina (New York) MSC: 35J47 35J61 35B53 PDF BibTeX XML Cite \textit{P. Quittner}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 222, Article ID 112971, 11 p. (2022; Zbl 1498.35229) Full Text: DOI arXiv OpenURL
Chen, Fulai; Liao, Fangfang; Geng, Shifeng Ground state solution for a class of Choquard equation with indefinite periodic potential. (English) Zbl 1491.35236 Appl. Math. Lett. 132, Article ID 108205, 8 p. (2022). MSC: 35J91 35J05 35A01 35A15 PDF BibTeX XML Cite \textit{F. Chen} et al., Appl. Math. Lett. 132, Article ID 108205, 8 p. (2022; Zbl 1491.35236) Full Text: DOI OpenURL
Wen, Lixi; Rădulescu, Vicenţiu D. Groundstates for magnetic Choquard equations with critical exponential growth. (English) Zbl 1492.35119 Appl. Math. Lett. 132, Article ID 108153, 8 p. (2022). Reviewer: Anouar Bahrouni (Monastir) MSC: 35J61 35B33 35A01 35J20 PDF BibTeX XML Cite \textit{L. Wen} and \textit{V. D. Rădulescu}, Appl. Math. Lett. 132, Article ID 108153, 8 p. (2022; Zbl 1492.35119) Full Text: DOI OpenURL
Liu, Zhisu; Lou, Yijun; Zhang, Jianjun A perturbation approach to studying sign-changing solutions of Kirchhoff equations with a general nonlinearity. (English) Zbl 1491.35219 Ann. Mat. Pura Appl. (4) 201, No. 3, 1229-1255 (2022). MSC: 35J62 35A01 PDF BibTeX XML Cite \textit{Z. Liu} et al., Ann. Mat. Pura Appl. (4) 201, No. 3, 1229--1255 (2022; Zbl 1491.35219) Full Text: DOI arXiv OpenURL
Shen, Liejun; Rădulescu, Vicenţiu D.; Yang, Minbo Planar Schrödinger-Choquard equations with potentials vanishing at infinity: the critical case. (English) Zbl 1491.35151 J. Differ. Equations 329, 206-254 (2022). MSC: 35J10 35J61 35A01 PDF BibTeX XML Cite \textit{L. Shen} et al., J. Differ. Equations 329, 206--254 (2022; Zbl 1491.35151) Full Text: DOI OpenURL
Du, Lele; Gao, Fashun; Yang, Minbo On elliptic equations with Stein-Weiss type convolution parts. (English) Zbl 1490.35179 Math. Z. 301, No. 2, 2185-2225 (2022). MSC: 35J91 35J05 35B33 35B06 35B65 PDF BibTeX XML Cite \textit{L. Du} et al., Math. Z. 301, No. 2, 2185--2225 (2022; Zbl 1490.35179) Full Text: DOI arXiv OpenURL
Maia, Liliane; Pellacci, Benedetta; Schiera, Delia Positive bound states to nonlinear Choquard equations in the presence of nonsymmetric potentials. (English) Zbl 1490.35432 Minimax Theory Appl. 7, No. 2, 321-338 (2022). MSC: 35Q55 35R09 35J91 35J20 PDF BibTeX XML Cite \textit{L. Maia} et al., Minimax Theory Appl. 7, No. 2, 321--338 (2022; Zbl 1490.35432) Full Text: arXiv Link OpenURL
Jin, Sangdon Multi-bump solutions for nonlinear elliptic equations involving critical Sobolev exponents. (English) Zbl 1490.35182 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 220, Article ID 112829, 26 p. (2022). MSC: 35J91 35A01 PDF BibTeX XML Cite \textit{S. Jin}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 220, Article ID 112829, 26 p. (2022; Zbl 1490.35182) Full Text: DOI OpenURL
Lin, Genghong; Yu, Jianshe Homoclinic solutions of periodic discrete Schrödinger equations with local superquadratic conditions. (English) Zbl 1491.35405 SIAM J. Math. Anal. 54, No. 2, 1966-2005 (2022). MSC: 35Q55 39A12 39A70 35A01 35B38 35A15 37C29 PDF BibTeX XML Cite \textit{G. Lin} and \textit{J. Yu}, SIAM J. Math. Anal. 54, No. 2, 1966--2005 (2022; Zbl 1491.35405) Full Text: DOI OpenURL
Li, Quanqing; Zhang, Jian; Wang, Wenbo; Teng, Kaimin Existence of nontrivial solutions for fractional Choquard equations with critical or supercritical growth. (English) Zbl 1486.35195 Appl. Anal. 101, No. 3, 849-857 (2022). MSC: 35J61 35R11 35A01 35A15 PDF BibTeX XML Cite \textit{Q. Li} et al., Appl. Anal. 101, No. 3, 849--857 (2022; Zbl 1486.35195) Full Text: DOI OpenURL
Li, Haoyu The borderline case of Bahri-Lions result and related problems. (English) Zbl 1486.35151 J. Math. Anal. Appl. 512, No. 1, Article ID 126073, 17 p. (2022). MSC: 35J05 35J91 PDF BibTeX XML Cite \textit{H. Li}, J. Math. Anal. Appl. 512, No. 1, Article ID 126073, 17 p. (2022; Zbl 1486.35151) Full Text: DOI OpenURL
Qin, Dongdong; Lai, Lizhen; Tang, Xianhua; Wu, Qingfang Existence and asymptotic behavior of ground states for Choquard-Pekar equations with Hardy potential and critical reaction. (English) Zbl 1485.35345 J. Geom. Anal. 32, No. 5, Paper No. 158, 44 p. (2022). Reviewer: Marius Ghergu (Dublin) MSC: 35Q55 35Q40 35J20 35J60 46N50 PDF BibTeX XML Cite \textit{D. Qin} et al., J. Geom. Anal. 32, No. 5, Paper No. 158, 44 p. (2022; Zbl 1485.35345) Full Text: DOI OpenURL
Maia, Liliane; Pellacci, Benedetta; Schiera, Delia Symmetric positive solutions to nonlinear Choquard equations with potentials. (English) Zbl 1485.35238 Calc. Var. Partial Differ. Equ. 61, No. 2, Paper No. 61, 34 p. (2022). MSC: 35J91 35J15 35A01 PDF BibTeX XML Cite \textit{L. Maia} et al., Calc. Var. Partial Differ. Equ. 61, No. 2, Paper No. 61, 34 p. (2022; Zbl 1485.35238) Full Text: DOI arXiv OpenURL
Zhang, Chengxiang; Zhang, Xu Normalized multi-bump solutions of nonlinear Schrödinger equations via variational approach. (English) Zbl 1491.35406 Calc. Var. Partial Differ. Equ. 61, No. 2, Paper No. 57, 20 p. (2022). MSC: 35Q55 35B25 35A15 35B38 35A01 PDF BibTeX XML Cite \textit{C. Zhang} and \textit{X. Zhang}, Calc. Var. Partial Differ. Equ. 61, No. 2, Paper No. 57, 20 p. (2022; Zbl 1491.35406) Full Text: DOI OpenURL
Zhang, Jian; Zhang, Wen Semiclassical states for coupled nonlinear Schrödinger system with competing potentials. (English) Zbl 1484.35189 J. Geom. Anal. 32, No. 4, Paper No. 114, 36 p. (2022). MSC: 35J47 35J61 35A01 35A15 PDF BibTeX XML Cite \textit{J. Zhang} and \textit{W. Zhang}, J. Geom. Anal. 32, No. 4, Paper No. 114, 36 p. (2022; Zbl 1484.35189) Full Text: DOI OpenURL
Zhang, Youpei; Tang, Xianhua Large perturbations of a magnetic system with Stein-Weiss convolution nonlinearity. (English) Zbl 1484.35210 J. Geom. Anal. 32, No. 3, Paper No. 102, 27 p. (2022). MSC: 35J60 35A01 35A15 PDF BibTeX XML Cite \textit{Y. Zhang} and \textit{X. Tang}, J. Geom. Anal. 32, No. 3, Paper No. 102, 27 p. (2022; Zbl 1484.35210) Full Text: DOI OpenURL
Liang, Sihua; Zhang, Binlin Soliton solutions for quasilinear Schrödinger equations involving convolution and critical Nonlinearities. (English) Zbl 1480.35219 J. Geom. Anal. 32, No. 1, Paper No. 9, 48 p. (2022). MSC: 35J62 35B33 35A01 35A15 PDF BibTeX XML Cite \textit{S. Liang} and \textit{B. Zhang}, J. Geom. Anal. 32, No. 1, Paper No. 9, 48 p. (2022; Zbl 1480.35219) Full Text: DOI OpenURL
Liu, Senli; Chen, Haibo Ground state solutions for nonlinear Choquard equation with singular potential and critical exponents. (English) Zbl 1480.35223 J. Math. Anal. Appl. 507, No. 2, Article ID 125799, 30 p. (2022). MSC: 35J62 35B33 35A01 35J20 PDF BibTeX XML Cite \textit{S. Liu} and \textit{H. Chen}, J. Math. Anal. Appl. 507, No. 2, Article ID 125799, 30 p. (2022; Zbl 1480.35223) Full Text: DOI OpenURL
Li, Shuoshuo; Shen, Zifei; Zhou, Jiazheng Nonlocal elliptic equation with critical exponential growth and resonance in high-order eigenvalues. (English) Zbl 1484.35214 Topol. Methods Nonlinear Anal. 58, No. 2, 569-590 (2021). MSC: 35J61 35B33 35A01 35A15 PDF BibTeX XML Cite \textit{S. Li} et al., Topol. Methods Nonlinear Anal. 58, No. 2, 569--590 (2021; Zbl 1484.35214) Full Text: DOI OpenURL
Albuquerque, Francisco S. B.; Ferreira, Marcelo C.; Severo, Uberlandio B. Ground state solutions for a nonlocal equation in \(\mathbb{R}^2\) involving vanishing potentials and exponential critical growth. (English) Zbl 1481.35227 Milan J. Math. 89, No. 2, 263-294 (2021). MSC: 35J91 35A01 35A15 PDF BibTeX XML Cite \textit{F. S. B. Albuquerque} et al., Milan J. Math. 89, No. 2, 263--294 (2021; Zbl 1481.35227) Full Text: DOI arXiv OpenURL
Tian, Jian; Wei, Yuan Hong Superlinear elliptic equation with mixed boundary value in annular domain. (English) Zbl 1479.35435 Acta Math. Sin., Engl. Ser. 37, No. 10, 1549-1559 (2021). MSC: 35J62 35J25 35A01 PDF BibTeX XML Cite \textit{J. Tian} and \textit{Y. H. Wei}, Acta Math. Sin., Engl. Ser. 37, No. 10, 1549--1559 (2021; Zbl 1479.35435) Full Text: DOI OpenURL
Gao, Fashun; Zhou, Jiazheng Semiclassical states for critical Choquard equations with critical frequency. (English) Zbl 1479.35405 Topol. Methods Nonlinear Anal. 57, No. 1, 107-133 (2021). MSC: 35J61 35J75 35A15 PDF BibTeX XML Cite \textit{F. Gao} and \textit{J. Zhou}, Topol. Methods Nonlinear Anal. 57, No. 1, 107--133 (2021; Zbl 1479.35405) Full Text: DOI OpenURL
Liao, Fangfang; Zhang, Jian; Chen, Jianwen Multiplicity of solutions for asymptotically quadratic Dirac-Poisson system with non-periodic potential. (English) Zbl 1475.35008 Appl. Math. Lett. 120, Article ID 107304, 8 p. (2021). MSC: 35A15 35J61 35Q41 PDF BibTeX XML Cite \textit{F. Liao} et al., Appl. Math. Lett. 120, Article ID 107304, 8 p. (2021; Zbl 1475.35008) Full Text: DOI OpenURL
He, Rui; Liu, Xiangqing Localized nodal solutions for semiclassical Choquard equations. (English) Zbl 1497.35215 J. Math. Phys. 62, No. 9, 091511, 21 p. (2021). MSC: 35J61 35A01 PDF BibTeX XML Cite \textit{R. He} and \textit{X. Liu}, J. Math. Phys. 62, No. 9, 091511, 21 p. (2021; Zbl 1497.35215) Full Text: DOI OpenURL
Zhou, Luyan; Li, Desheng Global dynamic bifurcation of local semiflows and nonlinear evolution equations. (English) Zbl 1473.35033 J. Differ. Equations 300, 625-659 (2021). MSC: 35B32 35J25 35J61 47A53 37B30 37G10 37K50 PDF BibTeX XML Cite \textit{L. Zhou} and \textit{D. Li}, J. Differ. Equations 300, 625--659 (2021; Zbl 1473.35033) Full Text: DOI OpenURL
Yang, Zhipeng; Zhao, Fukun Multiplicity and concentration behaviour of solutions for a fractional Choquard equation with critical growth. (English) Zbl 1466.35304 Adv. Nonlinear Anal. 10, 732-774 (2021). MSC: 35Q40 35J50 35B25 35B33 58E05 35R11 PDF BibTeX XML Cite \textit{Z. Yang} and \textit{F. Zhao}, Adv. Nonlinear Anal. 10, 732--774 (2021; Zbl 1466.35304) Full Text: DOI OpenURL
Ding, Yanheng; Dong, Xiaojing; Guo, Qi On multiplicity of semi-classical solutions to nonlinear Dirac equations of space-dimension \(n\). (English) Zbl 1482.35184 Discrete Contin. Dyn. Syst. 41, No. 9, 4105-4123 (2021). MSC: 35Q40 49J35 35A15 PDF BibTeX XML Cite \textit{Y. Ding} et al., Discrete Contin. Dyn. Syst. 41, No. 9, 4105--4123 (2021; Zbl 1482.35184) Full Text: DOI OpenURL
Benhassine, Abderrazek Standing wave solutions of Maxwell-Dirac systems. (English) Zbl 1465.49010 Calc. Var. Partial Differ. Equ. 60, No. 3, Paper No. 107, 20 p. (2021). MSC: 49J35 35Q40 81V10 PDF BibTeX XML Cite \textit{A. Benhassine}, Calc. Var. Partial Differ. Equ. 60, No. 3, Paper No. 107, 20 p. (2021; Zbl 1465.49010) Full Text: DOI OpenURL
Benhassine, Abderrazek On semiclassical states for Dirac equations. (English) Zbl 1480.35337 Z. Angew. Math. Phys. 72, No. 3, Paper No. 110, 22 p. (2021). Reviewer: Ivan Naumkin (Nice) MSC: 35Q40 49J35 81Q05 35A01 PDF BibTeX XML Cite \textit{A. Benhassine}, Z. Angew. Math. Phys. 72, No. 3, Paper No. 110, 22 p. (2021; Zbl 1480.35337) Full Text: DOI OpenURL
Qin, Dongdong; Lai, Lizhen; Yuan, Shuai; Wu, Qingfang Ground states and multiple solutions for Choquard-Pekar equations with indefinite potential and general nonlinearity. (English) Zbl 1465.35248 J. Math. Anal. Appl. 500, No. 2, Article ID 125143, 29 p. (2021). MSC: 35J91 35A01 35A15 PDF BibTeX XML Cite \textit{D. Qin} et al., J. Math. Anal. Appl. 500, No. 2, Article ID 125143, 29 p. (2021; Zbl 1465.35248) Full Text: DOI OpenURL
Gao, Fashun; Liu, Haidong; Moroz, Vitaly; Yang, Minbo High energy positive solutions for a coupled Hartree system with Hardy-Littlewood-Sobolev critical exponents. (English) Zbl 1465.35176 J. Differ. Equations 287, 329-375 (2021). MSC: 35J47 35J91 35B09 35A02 PDF BibTeX XML Cite \textit{F. Gao} et al., J. Differ. Equations 287, 329--375 (2021; Zbl 1465.35176) Full Text: DOI arXiv OpenURL
Qin, Dongdong; Tang, Xianhua On the planar Choquard equation with indefinite potential and critical exponential growth. (English) Zbl 1465.35249 J. Differ. Equations 285, 40-98 (2021). MSC: 35J91 35A01 PDF BibTeX XML Cite \textit{D. Qin} and \textit{X. Tang}, J. Differ. Equations 285, 40--98 (2021; Zbl 1465.35249) Full Text: DOI OpenURL
Li, Haoyu; Wang, Zhi-Qiang Multiple positive solutions for coupled Schrödinger equations with perturbations. (English) Zbl 1460.35129 Commun. Pure Appl. Anal. 20, No. 2, 867-884 (2021). MSC: 35J57 35J50 35A01 PDF BibTeX XML Cite \textit{H. Li} and \textit{Z.-Q. Wang}, Commun. Pure Appl. Anal. 20, No. 2, 867--884 (2021; Zbl 1460.35129) Full Text: DOI OpenURL
He, Xiaoming; Rădulescu, Vicenţiu D. Small linear perturbations of fractional Choquard equations with critical exponent. (English) Zbl 1464.35082 J. Differ. Equations 282, 481-540 (2021). Reviewer: Calogero Vetro (Palermo) MSC: 35J20 35A15 35B33 81Q05 PDF BibTeX XML Cite \textit{X. He} and \textit{V. D. Rădulescu}, J. Differ. Equations 282, 481--540 (2021; Zbl 1464.35082) Full Text: DOI OpenURL
Liu, Xiaonan; Ma, Shiwang; Xia, Jiankang Multiple bound states of higher topological type for semi-classical Choquard equations. (English) Zbl 1459.35178 Proc. R. Soc. Edinb., Sect. A, Math. 151, No. 1, 329-355 (2021). MSC: 35J61 35A01 35J20 PDF BibTeX XML Cite \textit{X. Liu} et al., Proc. R. Soc. Edinb., Sect. A, Math. 151, No. 1, 329--355 (2021; Zbl 1459.35178) Full Text: DOI OpenURL
Shen, Liejun Ground state solutions for planar Schrödinger-Poisson system involving subcritical and critical exponential growth with convolution nonlinearity. (English) Zbl 1459.35135 J. Math. Anal. Appl. 495, No. 1, Article ID 124662, 20 p. (2021). MSC: 35J47 35J05 35J10 35A01 PDF BibTeX XML Cite \textit{L. Shen}, J. Math. Anal. Appl. 495, No. 1, Article ID 124662, 20 p. (2021; Zbl 1459.35135) Full Text: DOI OpenURL
Bartsch, Thomas; Xu, Tian Strongly localized semiclassical states for nonlinear Dirac equations. (English) Zbl 1460.35308 Discrete Contin. Dyn. Syst. 41, No. 1, 29-60 (2021). MSC: 35Q41 49J35 35B38 PDF BibTeX XML Cite \textit{T. Bartsch} and \textit{T. Xu}, Discrete Contin. Dyn. Syst. 41, No. 1, 29--60 (2021; Zbl 1460.35308) Full Text: DOI arXiv OpenURL
Xia, Jiankang; Zhang, Xu Saddle solutions for the critical Choquard equation. (English) Zbl 1459.35216 Calc. Var. Partial Differ. Equ. 60, No. 1, Paper No. 53, 30 p. (2021). MSC: 35J91 35A15 35B33 35B06 35J20 PDF BibTeX XML Cite \textit{J. Xia} and \textit{X. Zhang}, Calc. Var. Partial Differ. Equ. 60, No. 1, Paper No. 53, 30 p. (2021; Zbl 1459.35216) Full Text: DOI OpenURL
Li, Haoyu; Wang, Zhi-Qiang Multiple nodal solutions having shared componentwise nodal numbers for coupled Schrödinger equations. (English) Zbl 1459.35131 J. Funct. Anal. 280, No. 7, Article ID 108872, 45 p. (2021). MSC: 35J47 35Q55 35J50 PDF BibTeX XML Cite \textit{H. Li} and \textit{Z.-Q. Wang}, J. Funct. Anal. 280, No. 7, Article ID 108872, 45 p. (2021; Zbl 1459.35131) Full Text: DOI arXiv OpenURL
Ding, Yanheng; Guo, Qi; Yu, Yuanyang Existence of semiclassical solutions for some critical Dirac equation. (English) Zbl 1456.81166 J. Math. Phys. 62, No. 1, 011501, 22 p. (2021). MSC: 81Q05 81R20 81Q20 15A66 35A15 35A01 PDF BibTeX XML Cite \textit{Y. Ding} et al., J. Math. Phys. 62, No. 1, 011501, 22 p. (2021; Zbl 1456.81166) Full Text: DOI OpenURL
Qin, Dongdong; Rădulescu, Vicenţiu D.; X. H. Tang, Xianhua Ground states and geometrically distinct solutions for periodic Choquard-Pekar equations. (English) Zbl 1456.35187 J. Differ. Equations 275, 652-683 (2021). Reviewer: Anthony D. Osborne (Keele) MSC: 35Q55 35Q40 35J20 35J60 46N50 PDF BibTeX XML Cite \textit{D. Qin} et al., J. Differ. Equations 275, 652--683 (2021; Zbl 1456.35187) Full Text: DOI OpenURL
Gou, Tianxiang; Zhang, Zhitao Normalized solutions to the Chern-Simons-Schrödinger system. (English) Zbl 1455.35080 J. Funct. Anal. 280, No. 5, Article ID 108894, 66 p. (2021). MSC: 35J47 35B06 35A01 PDF BibTeX XML Cite \textit{T. Gou} and \textit{Z. Zhang}, J. Funct. Anal. 280, No. 5, Article ID 108894, 66 p. (2021; Zbl 1455.35080) Full Text: DOI arXiv OpenURL
Wang, Xingchang; Xu, Runzhang Global existence and finite time blowup for a nonlocal semilinear pseudo-parabolic equation. (English) Zbl 1447.35078 Adv. Nonlinear Anal. 10, 261-288 (2021). MSC: 35B44 35K58 35K70 35K20 PDF BibTeX XML Cite \textit{X. Wang} and \textit{R. Xu}, Adv. Nonlinear Anal. 10, 261--288 (2021; Zbl 1447.35078) Full Text: DOI OpenURL
Chen, Sitong; Tang, Xianhua; Wei, Jiuyang Nehari-type ground state solutions for a Choquard equation with doubly critical exponents. (English) Zbl 1440.35130 Adv. Nonlinear Anal. 10, 152-171 (2021). MSC: 35J61 35A01 35J20 PDF BibTeX XML Cite \textit{S. Chen} et al., Adv. Nonlinear Anal. 10, 152--171 (2021; Zbl 1440.35130) Full Text: DOI OpenURL
Ding, Yanheng; Gao, Fashun; Yang, Minbo Semiclassical states for Choquard type equations with critical growth: critical frequency case. (English) Zbl 1454.35085 Nonlinearity 33, No. 12, 6695-6728 (2020). MSC: 35J20 35J60 35B33 PDF BibTeX XML Cite \textit{Y. Ding} et al., Nonlinearity 33, No. 12, 6695--6728 (2020; Zbl 1454.35085) Full Text: DOI arXiv OpenURL
Qin, Dongdong; Tang, Xianhua; Wu, Qingfang Existence and concentration properties of ground state solutions for elliptic systems. (English) Zbl 1454.35065 Complex Var. Elliptic Equ. 65, No. 8, 1257-1286 (2020). MSC: 35J05 35J50 35E05 PDF BibTeX XML Cite \textit{D. Qin} et al., Complex Var. Elliptic Equ. 65, No. 8, 1257--1286 (2020; Zbl 1454.35065) Full Text: DOI OpenURL
Jeanjean, Louis; Lu, Sheng-Sen A mass supercritical problem revisited. (English) Zbl 1453.35087 Calc. Var. Partial Differ. Equ. 59, No. 5, Paper No. 174, 42 p. (2020). Reviewer: Marius Ghergu (Dublin) MSC: 35J60 35Q55 PDF BibTeX XML Cite \textit{L. Jeanjean} and \textit{S.-S. Lu}, Calc. Var. Partial Differ. Equ. 59, No. 5, Paper No. 174, 42 p. (2020; Zbl 1453.35087) Full Text: DOI arXiv OpenURL
Luo, Haijun; Zhang, Zhitao Normalized solutions to the fractional Schrödinger equations with combined nonlinearities. (English) Zbl 1445.35307 Calc. Var. Partial Differ. Equ. 59, No. 4, Paper No. 143, 35 p. (2020). MSC: 35R11 26A33 35J61 PDF BibTeX XML Cite \textit{H. Luo} and \textit{Z. Zhang}, Calc. Var. Partial Differ. Equ. 59, No. 4, Paper No. 143, 35 p. (2020; Zbl 1445.35307) Full Text: DOI OpenURL
Fang, Xiang-Dong; Wang, Zhi-Qiang Limiting profile of solutions for Schrödinger equations with shrinking self-focusing core. (English) Zbl 1448.35247 Calc. Var. Partial Differ. Equ. 59, No. 4, Paper No. 129, 18 p. (2020). Reviewer: Sergey G. Pyatkov (Khanty-Mansiysk) MSC: 35J91 35J20 PDF BibTeX XML Cite \textit{X.-D. Fang} and \textit{Z.-Q. Wang}, Calc. Var. Partial Differ. Equ. 59, No. 4, Paper No. 129, 18 p. (2020; Zbl 1448.35247) Full Text: DOI OpenURL
Maia, Liliane A.; Ruviaro, Ricardo; Moura, Elson L. Bound state for a strongly coupled nonlinear Schrödinger system with saturation. (English) Zbl 1442.35086 Milan J. Math. 88, No. 1, 35-63 (2020). MSC: 35J10 35J47 35Q55 PDF BibTeX XML Cite \textit{L. A. Maia} et al., Milan J. Math. 88, No. 1, 35--63 (2020; Zbl 1442.35086) Full Text: DOI OpenURL
Soave, Nicola Normalized ground states for the NLS equation with combined nonlinearities. (English) Zbl 1440.35312 J. Differ. Equations 269, No. 9, 6941-6987 (2020). MSC: 35Q55 35J20 35B44 35A01 35B35 PDF BibTeX XML Cite \textit{N. Soave}, J. Differ. Equations 269, No. 9, 6941--6987 (2020; Zbl 1440.35312) Full Text: DOI arXiv OpenURL
Soave, Nicola Normalized ground states for the NLS equation with combined nonlinearities: the Sobolev critical case. (English) Zbl 1440.35311 J. Funct. Anal. 279, No. 6, Article ID 108610, 42 p. (2020). MSC: 35Q55 35J20 35J60 PDF BibTeX XML Cite \textit{N. Soave}, J. Funct. Anal. 279, No. 6, Article ID 108610, 42 p. (2020; Zbl 1440.35311) Full Text: DOI arXiv OpenURL
Alves, Claudianor O.; Luo, Huxiao; Yang, Minbo Ground state solutions for a class of strongly indefinite Choquard equations. (English) Zbl 1440.35126 Bull. Malays. Math. Sci. Soc. (2) 43, No. 4, 3271-3304 (2020). MSC: 35J61 35J50 58E30 35A01 PDF BibTeX XML Cite \textit{C. O. Alves} et al., Bull. Malays. Math. Sci. Soc. (2) 43, No. 4, 3271--3304 (2020; Zbl 1440.35126) Full Text: DOI OpenURL
Wu, Qingfang; Qin, Dongdong; Chen, Jing Ground states and non-existence results for Choquard type equations with lower critical exponent and indefinite potentials. (English) Zbl 1440.35144 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 197, Article ID 111863, 19 p. (2020). MSC: 35J61 35B33 35J20 PDF BibTeX XML Cite \textit{Q. Wu} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 197, Article ID 111863, 19 p. (2020; Zbl 1440.35144) Full Text: DOI OpenURL
Li, Quanqing; Teng, Kaiming; Zhang, Jian Ground state solutions for fractional Choquard equations involving upper critical exponent. (English) Zbl 1440.35113 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 197, Article ID 111846, 10 p. (2020). MSC: 35J60 35R11 35A15 PDF BibTeX XML Cite \textit{Q. Li} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 197, Article ID 111846, 10 p. (2020; Zbl 1440.35113) Full Text: DOI OpenURL
Lehrer, Raquel; Soares, Sergio H. Monari Existence and concentration of positive solutions for a system of coupled saturable Schrödinger equations. (English) Zbl 1440.35056 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 197, Article ID 111841, 28 p. (2020). MSC: 35J10 35J47 35Q55 35A01 35J20 PDF BibTeX XML Cite \textit{R. Lehrer} and \textit{S. H. M. Soares}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 197, Article ID 111841, 28 p. (2020; Zbl 1440.35056) Full Text: DOI OpenURL
de Souza, Manassés; Felix, Diego D.; de Medeiros, Everaldo S. A sharp Sobolev inequality and its applications to an indefinite elliptic equation with Neumann boundary conditions. (English) Zbl 1440.35135 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 197, Article ID 111840, 20 p. (2020). MSC: 35J61 35J25 35J20 PDF BibTeX XML Cite \textit{M. de Souza} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 197, Article ID 111840, 20 p. (2020; Zbl 1440.35135) Full Text: DOI OpenURL
Lin, Genghong; Zhou, Zhan; Yu, Jianshe Ground state solutions of discrete asymptotically linear Schrödinger equations with bounded and non-periodic potentials. (English) Zbl 1439.39010 J. Dyn. Differ. Equations 32, No. 2, 527-555 (2020). MSC: 39A36 39A22 39A12 35Q55 PDF BibTeX XML Cite \textit{G. Lin} et al., J. Dyn. Differ. Equations 32, No. 2, 527--555 (2020; Zbl 1439.39010) Full Text: DOI OpenURL
Wang, Xiaoping; Liao, Fangfang Ground state solutions for a Choquard equation with lower critical exponent and local nonlinear perturbation. (English) Zbl 1436.35118 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 196, Article ID 111831, 13 p. (2020). MSC: 35J20 35J62 35Q55 PDF BibTeX XML Cite \textit{X. Wang} and \textit{F. Liao}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 196, Article ID 111831, 13 p. (2020; Zbl 1436.35118) Full Text: DOI OpenURL
Ma, He; Meng, Fanmo; Wang, Xingchang High initial energy finite time blowup with upper bound of blowup time of solution to semilinear parabolic equations. (English) Zbl 1439.35184 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 196, Article ID 111810, 8 p. (2020). Reviewer: Vicenţiu D. Rădulescu (Craiova) MSC: 35K05 35B44 PDF BibTeX XML Cite \textit{H. Ma} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 196, Article ID 111810, 8 p. (2020; Zbl 1439.35184) Full Text: DOI OpenURL
Ding, Yanheng; Guo, Qi; Yu, Yuanyang Semiclassical states for Dirac-Klein-Gordon system with critical growth. (English) Zbl 1436.35027 J. Math. Anal. Appl. 488, No. 2, Article ID 124092, 29 p. (2020). MSC: 35B25 35A01 PDF BibTeX XML Cite \textit{Y. Ding} et al., J. Math. Anal. Appl. 488, No. 2, Article ID 124092, 29 p. (2020; Zbl 1436.35027) Full Text: DOI OpenURL
Gao, Fashun; Yang, Minbo; Zhou, Jiazheng Existence of multiple semiclassical solutions for a critical Choquard equation with indefinite potential. (English) Zbl 1437.35295 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 195, Article ID 111817, 20 p. (2020). MSC: 35J60 35A01 35A15 PDF BibTeX XML Cite \textit{F. Gao} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 195, Article ID 111817, 20 p. (2020; Zbl 1437.35295) Full Text: DOI OpenURL
Ding, Yanheng; Yu, Yuanyang The concentration behavior of ground state solutions for nonlinear Dirac equation. (English) Zbl 1435.35325 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 195, Article ID 111738, 24 p. (2020). Reviewer: Alessandro Selvitella (Fort Wayne) MSC: 35Q41 35Q40 49J35 81V10 83C10 PDF BibTeX XML Cite \textit{Y. Ding} and \textit{Y. Yu}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 195, Article ID 111738, 24 p. (2020; Zbl 1435.35325) Full Text: DOI OpenURL
Gao, Fashun; Da Silva, Edcarlos D.; Yang, Minbo; Zhou, Jiazheng Existence of solutions for critical Choquard equations via the concentration-compactness method. (English) Zbl 1437.35213 Proc. R. Soc. Edinb., Sect. A, Math. 150, No. 2, 921-954 (2020). MSC: 35J20 35J60 35A15 PDF BibTeX XML Cite \textit{F. Gao} et al., Proc. R. Soc. Edinb., Sect. A, Math. 150, No. 2, 921--954 (2020; Zbl 1437.35213) Full Text: DOI arXiv OpenURL
Ambrosio, Vincenzo Multiplicity and concentration results for a fractional Schrödinger-Poisson type equation with magnetic field. (English) Zbl 1437.35689 Proc. R. Soc. Edinb., Sect. A, Math. 150, No. 2, 655-694 (2020). Reviewer: Mohammed El Aïdi (Bogotá) MSC: 35R11 35A15 35S05 58E05 PDF BibTeX XML Cite \textit{V. Ambrosio}, Proc. R. Soc. Edinb., Sect. A, Math. 150, No. 2, 655--694 (2020; Zbl 1437.35689) Full Text: DOI arXiv OpenURL
Fernández, Juan Carlos; Petean, Jimmy Low energy nodal solutions to the Yamabe equation. (English) Zbl 1437.34030 J. Differ. Equations 268, No. 11, 6576-6597 (2020). Reviewer: Petio S. Kelevedjiev (Sliven) MSC: 34B16 34C10 35B06 53C21 58J05 PDF BibTeX XML Cite \textit{J. C. Fernández} and \textit{J. Petean}, J. Differ. Equations 268, No. 11, 6576--6597 (2020; Zbl 1437.34030) Full Text: DOI arXiv OpenURL
Ma, Pei; Shang, Xudong; Zhang, Jihui Symmetry and nonexistence of positive solutions for fractional Choquard equations. (English) Zbl 1444.35152 Pac. J. Math. 304, No. 1, 143-167 (2020). Reviewer: Gaetano Siciliano (São Paulo) MSC: 35R11 35B06 35B09 35B50 35B53 PDF BibTeX XML Cite \textit{P. Ma} et al., Pac. J. Math. 304, No. 1, 143--167 (2020; Zbl 1444.35152) Full Text: DOI arXiv OpenURL
Tang, Xianhua; Lin, Xiaoyan Existence of ground state solutions of Nehari-Pankov type to Schrödinger systems. (English) Zbl 1444.35052 Sci. China, Math. 63, No. 1, 113-134 (2020). Reviewer: Fukun Zhao (Kunming) MSC: 35J50 35E05 35J60 PDF BibTeX XML Cite \textit{X. Tang} and \textit{X. Lin}, Sci. China, Math. 63, No. 1, 113--134 (2020; Zbl 1444.35052) Full Text: DOI arXiv OpenURL
Guo, Ting; Tang, Xianhua; Zhang, Qi; Gao, Zu Nontrivial solutions for the Choquard equation with indefinite linear part and upper critical exponent. (English) Zbl 1435.35046 Commun. Pure Appl. Anal. 19, No. 3, 1563-1579 (2020). MSC: 35B33 35J20 35J61 PDF BibTeX XML Cite \textit{T. Guo} et al., Commun. Pure Appl. Anal. 19, No. 3, 1563--1579 (2020; Zbl 1435.35046) Full Text: DOI OpenURL
Olszowy, Leszek; Zając, Tomasz Some inequalities and superposition operator in the space of regulated functions. (English) Zbl 1435.47055 Adv. Nonlinear Anal. 9, 1278-1290 (2020). Reviewer: Jürgen Appell (Würzburg) MSC: 47H30 46E40 47H08 PDF BibTeX XML Cite \textit{L. Olszowy} and \textit{T. Zając}, Adv. Nonlinear Anal. 9, 1278--1290 (2020; Zbl 1435.47055) Full Text: DOI OpenURL
Lü, Dengfeng; Peng, Shuangjie Existence and concentration of solutions for singularly perturbed doubly nonlocal elliptic equations. (English) Zbl 1437.35308 Commun. Contemp. Math. 22, No. 1, Article ID 1850074, 37 p. (2020). MSC: 35J60 35Q55 PDF BibTeX XML Cite \textit{D. Lü} and \textit{S. Peng}, Commun. Contemp. Math. 22, No. 1, Article ID 1850074, 37 p. (2020; Zbl 1437.35308) Full Text: DOI OpenURL
Chen, Sitong; Tang, Xianhua Ground state solutions for general Choquard equations with a variable potential and a local nonlinearity. (English) Zbl 1437.35209 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 114, No. 1, Paper No. 14, 23 p. (2020). MSC: 35J20 35J62 35Q55 PDF BibTeX XML Cite \textit{S. Chen} and \textit{X. Tang}, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 114, No. 1, Paper No. 14, 23 p. (2020; Zbl 1437.35209) Full Text: DOI OpenURL
Chen, Shaoxiong; Li, Yue; Yang, Zhipeng Multiplicity and concentration of nontrivial nonnegative solutions for a fractional Choquard equation with critical exponent. (English) Zbl 1430.35173 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 114, No. 1, Paper No. 33, 35 p. (2020). MSC: 35P15 35P30 35R11 PDF BibTeX XML Cite \textit{S. Chen} et al., Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 114, No. 1, Paper No. 33, 35 p. (2020; Zbl 1430.35173) Full Text: DOI arXiv OpenURL
Gu, Long-Jiang Multiple solutions for a Choquard system with periodic potential. (English) Zbl 1433.35057 J. Math. Anal. Appl. 484, No. 1, Article ID 123704, 23 p. (2020). MSC: 35J47 35J61 PDF BibTeX XML Cite \textit{L.-J. Gu}, J. Math. Anal. Appl. 484, No. 1, Article ID 123704, 23 p. (2020; Zbl 1433.35057) Full Text: DOI OpenURL
Zhang, Hui; Zhang, Fubao Multiplicity and concentration of solutions for Choquard equations with critical growth. (English) Zbl 1426.35020 J. Math. Anal. Appl. 481, No. 1, Article ID 123457, 21 p. (2020). MSC: 35B25 35J61 35R09 35J20 35B33 PDF BibTeX XML Cite \textit{H. Zhang} and \textit{F. Zhang}, J. Math. Anal. Appl. 481, No. 1, Article ID 123457, 21 p. (2020; Zbl 1426.35020) Full Text: DOI OpenURL
Ambrosio, Vincenzo On the multiplicity and concentration of positive solutions for a \(p\)-fractional Choquard equation in \(\mathbb{R}^N\). (English) Zbl 1443.35163 Comput. Math. Appl. 78, No. 8, 2593-2617 (2019). MSC: 35R11 35A35 PDF BibTeX XML Cite \textit{V. Ambrosio}, Comput. Math. Appl. 78, No. 8, 2593--2617 (2019; Zbl 1443.35163) Full Text: DOI arXiv OpenURL
Li, Xinfu; Liu, Xiaonan; Ma, Shiwang Infinitely many bound states for Choquard equations with local nonlinearities. (English) Zbl 1430.35102 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 189, Article ID 111583, 23 p. (2019). MSC: 35J91 35J20 PDF BibTeX XML Cite \textit{X. Li} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 189, Article ID 111583, 23 p. (2019; Zbl 1430.35102) Full Text: DOI OpenURL
Zhang, Jing; Wu, Qingfang; Qin, Dongdong Semiclassical solutions for Choquard equations with Berestycki-Lions type conditions. (English) Zbl 1429.35093 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 188, 22-49 (2019). MSC: 35J61 PDF BibTeX XML Cite \textit{J. Zhang} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 188, 22--49 (2019; Zbl 1429.35093) Full Text: DOI OpenURL
Choi, Woocheol; Kim, Seunghyeok Asymptotic behavior of least energy solutions to the Lane-Emden system near the critical hyperbola. (English. French summary) Zbl 1437.35065 J. Math. Pures Appl. (9) 132, 398-456 (2019). Reviewer: Huansong Zhou (Wuhan) MSC: 35B40 35B33 35J47 35J61 PDF BibTeX XML Cite \textit{W. Choi} and \textit{S. Kim}, J. Math. Pures Appl. (9) 132, 398--456 (2019; Zbl 1437.35065) Full Text: DOI arXiv OpenURL
Gao, Fashun; Yang, Minbo; Santos, Carlos Alberto; Zhou, Jiazheng Infinitely many solutions for a class of critical Choquard equation with zero mass. (English) Zbl 1433.35035 Topol. Methods Nonlinear Anal. 54, No. 1, 219-232 (2019). MSC: 35J20 35J60 35A15 PDF BibTeX XML Cite \textit{F. Gao} et al., Topol. Methods Nonlinear Anal. 54, No. 1, 219--232 (2019; Zbl 1433.35035) Full Text: DOI Euclid OpenURL
Dong, Xu; Wei, Yuanhong Existence of radial solutions for nonlinear elliptic equations with gradient terms in annular domains. (English) Zbl 1425.35052 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 187, 93-109 (2019). MSC: 35J62 35J25 35A01 PDF BibTeX XML Cite \textit{X. Dong} and \textit{Y. Wei}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 187, 93--109 (2019; Zbl 1425.35052) Full Text: DOI OpenURL
Liu, Zhisu; Ouyang, Zigen; Zhang, Jianjun Existence and multiplicity of sign-changing standing waves for a gauged nonlinear Schrödinger equation in \(\mathbb R^2\). (English) Zbl 1421.35155 Nonlinearity 32, No. 8, 3082-3111 (2019). MSC: 35J91 35J10 35J20 PDF BibTeX XML Cite \textit{Z. Liu} et al., Nonlinearity 32, No. 8, 3082--3111 (2019; Zbl 1421.35155) Full Text: DOI arXiv OpenURL
Bonheure, Denis; Casteras, Jean-Baptiste; Gou, Tianxiang; Jeanjean, Louis Normalized solutions to the mixed dispersion nonlinear Schrödinger equation in the mass critical and supercritical regime. (English) Zbl 1420.35343 Trans. Am. Math. Soc. 372, No. 3, 2167-2212 (2019). MSC: 35Q55 35J30 35J50 35B35 35Q60 35Q40 35B09 PDF BibTeX XML Cite \textit{D. Bonheure} et al., Trans. Am. Math. Soc. 372, No. 3, 2167--2212 (2019; Zbl 1420.35343) Full Text: DOI arXiv OpenURL
Liu, Min; Tang, Zhongwei Multiplicity and concentration of solutions for Choquard equation via Nehari method and pseudo-index theory. (English) Zbl 1415.35108 Discrete Contin. Dyn. Syst. 39, No. 6, 3365-3398 (2019). MSC: 35J20 35R09 35J61 PDF BibTeX XML Cite \textit{M. Liu} and \textit{Z. Tang}, Discrete Contin. Dyn. Syst. 39, No. 6, 3365--3398 (2019; Zbl 1415.35108) Full Text: DOI OpenURL