Benhassine, Abderrazek Existence of ground states solutions for Dirac-Poisson systems. (English) Zbl 1538.81012 São Paulo J. Math. Sci. 17, No. 2, 978-993 (2023). Summary: This paper concerns the ground state solutions for the system of partial differential equations known as the Dirac-Poisson system. Under suitable assumptions on the nonlinearity, we show the existence of nontrivial and ground state solutions. MSC: 81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics 35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation 30C70 Extremal problems for conformal and quasiconformal mappings, variational methods Keywords:Dirac-Poisson system; variational methods; ground states solutions; strongly indefinite functionals × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Abenda, S., Solitary waves for Maxwell-Dirac and Coulomb-Dirac models, Ann. Inst. Henri. Poincaré, 68, 229-244 (1998) · Zbl 0907.35104 [2] Ambrosetti, A., On Schrödinger-Poisson systems, Milan J. Math., 76, 257-274 (2008) · Zbl 1181.35257 [3] Ackermann, N., On a periodic Schrödinger equation with nonlocal superlinear part, Math. Z., 248, 423-443 (2004) · Zbl 1059.35037 [4] Ackermann, N., A Cauchy-Schwarz type inequality for bilinear integrals on positive measures, Proc. Amer. Math. Soc., 133, 2647-2656 (2005) · Zbl 1066.26013 [5] Azzollini, A.; Pomponio, A., Ground state solutions for the nonlinear Schrödinger-Maxwell equations, J. Math. Anal. Appl., 345, 90-108 (2008) · Zbl 1147.35091 [6] Booss-Bavnbek, B., Unique continuation property for Dirac operator, revisited, Contemp. Math., 258, 21-32 (2000) · Zbl 1004.58011 [7] Bartsch, T.; Ding, YH, Deformation theorems on non-metrizable vector spaces and applications to critical point theory, Math. Nach., 279, 1267-1288 (2006) · Zbl 1117.58007 [8] Bartsch, T.; Ding, YH, Solutions of nonlinear Dirac equations, J. Diff. Equ., 226, 210-249 (2006) · Zbl 1126.49003 [9] Benhassine, A., Standing wave solutions of Maxwell-Dirac systems, Calc. Var., 60, 107 (2021) · Zbl 1465.49010 [10] Benhassine, A., On nonlinear Dirac equations, J. Math. Phys., 60, 011510 (2019) · Zbl 1410.35155 · doi:10.1063/1.5053684 [11] Brezis, H.; Lieb, E., A relation between pointwise convergence of function and convergence of functional, Proc. Amer. Math. Soc., 88, 486-490 (1983) · Zbl 0526.46037 [12] Chadam, JM, Global solutions of the Cauchy problem for the (classical) coupled Maxwell-Dirac system in one space dimension, J. Funct. Anal., 13, 173-184 (1973) · Zbl 0264.35058 [13] Chadam, JM; Glassey, RT, On the Maxwell-Dirac equations with zero magnetic field and their solutions in two space dimension, J. Math. Anal. Appl., 53, 495-507 (1976) · Zbl 0324.35076 [14] Cerami, G.; Vaira, G., Positive solutions for some non-autonomous Schrödinger-Poisson systems, J. Diff. Eq., 248, 521-543 (2010) · Zbl 1183.35109 [15] Chen, GY; Zheng, YQ, Stationary solutions of non-autonomous Maxwell-Dirac systems, J. Diff. Equ., 255, 840-864 (2013) · Zbl 1281.49040 [16] Ding, YH, Variational Methods for Strongly Indefinite Problems (2008), Singapore: World Scientific Press, Singapore [17] Ding, Y. H., Wei, J. C., Xu, T.: Existence and concentration of semi-classical solutions for a nonlinear Maxwell-Dirac system, J. Math. Phys., 54 (2013) · Zbl 1282.81073 [18] Ding, YH; Xu, T., On the concentration of semi-classical states for a nonlinear Dira-cKlein-Gordon system, J. Diff. Equ., 256, 1264-1294 (2014) · Zbl 1283.35099 [19] Ding, YH; Xu, T., On semi-classical limits of ground states of a nonlinear Maxwell-Dirac system, Calc. Var. Part. Diff. Equa., 51, 17-44 (2014) · Zbl 1297.35197 [20] Esteban, MJ; Georgiev, V.; Séré, E., Stationary solutions of the Maxwell-Dirac and the Klein-Gordon-Dirac equations, Calc. Var. Part. Differ. Equa., 4, 265-281 (1996) · Zbl 0869.35105 [21] Esteban, MJ; Lewin, M.; Séré, E., Variational methods in relativistic quantum mechanics, Bull. Am. Math. Soc., 45, 535-593 (2008) · Zbl 1288.49016 [22] Flato, M.; Simon, J.; Taffin, E., On the global solutions of the Maxwell-Dirac equations, Commun. Math. Phys., 113, 21-49 (1987) · Zbl 0641.35064 [23] Finkelstein, R.; Levier, R.; Ruderman, M., Nonlinear spinor fields, Phys. Rev., 83, 326-332 (1951) · Zbl 0043.21603 [24] Finkelstein, R.; Fronsdal, C.; Kaus, P., Nonlinear spinor field, Phys. Rev., 103, 1571-1579 (1956) · Zbl 0073.44705 [25] Georgiev, V., Small amplitude solutions of Maxwell-Dirac equations, Indiana Univ. Math. J., 40, 845-883 (1991) · Zbl 0754.35171 [26] Gross, L., The Cauchy problem for the coupled Maxwell-Dirac equations, Commun. Pure Appl. Math., 19, 1-5 (1966) · Zbl 0137.32401 [27] Grandy Jr. W. T.: Relativistic Quantum Mechanics of Leptonsand Fields, Fundam. Theor. Phys., vol. 41, Kluwer Academic Publishers Group, Dordrecht, (1991) [28] Glassey, RT; Chadam, JM, Properties of the solutions of the Cauchy problem for the classical coupled Maxwell-Dirac equations in one space dimension, Proc. Am. Math. Soc., 43, 373-378 (1974) · Zbl 0258.35004 [29] Kryszewki, W.; Szulkin, A., Generalized linking theorem with an application to semilinear Schrödinger equation, Adv. Diff. Equ., 3, 441-472 (1998) · Zbl 0947.35061 [30] Lisi, AG, A solitary wave solution of the Maxwell-Dirac equations, J. Phys. A: Math. Gen., 28, 5385-5392 (1995) · Zbl 0868.35121 [31] Lions, P.L.: The concentration-compactness principle in the calculus of variations. The locally compact case, part 2, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1, 223-283 (1984) · Zbl 0704.49004 [32] Liu, ZS; Guo, SJ, On ground state solutions for the Schrödinger-Poisson equations with critical growth, J. Math. Anal. Appl., 412, 435-448 (2014) · Zbl 1312.35059 [33] Radford, CJ, The stationary Maxwell-Dirace quations, J. Phys. A: Math. Gen., 36, 5663-5681 (2003) · Zbl 1053.81022 [34] Ruiz, D., The Schrödinger-Poisson equation under the effect of a nonlinear local term, J. Funct. Anal., 237, 665-674 (2006) · Zbl 1136.35037 [35] Sparber, C.; Markowich, P., Semiclassical asymptotics for the Maxwell-Dirac system, J. Math. Phys., 44, 4555-4572 (2003) · Zbl 1062.81059 [36] Thaller, B., The Dirac Equation (1992), Berlin: Springer, Berlin [37] Wakano, M., Intensely localized solutions of the classical Dirac-Maxwell field equations, Progr. Theoret. Phys., 35, 1117-1141 (1966) [38] Willem, M., Minimax Theorems (1996), Berlin: Birkhäuser, Berlin · Zbl 0856.49001 [39] Wittmann, J.: Minimal kernels of Dirac operators along maps, Mathematische Nachrichten. 1-9 (2019) [40] Yang, Z.; Yu, Y.; Zhao, F., The concentration behavior of ground state solutions for a critical fractional Schrödinger-Poisson system, Math. Nach., 292, 1-32 (2019) [41] Zhao, FK; Ding, YH, Infinitely many solutions for a class of nonlinear Dirac equations without symmetry, Nonlinear Anal., 70, 921-935 (2009) · Zbl 1152.35501 [42] Zhang, J.; Qin, WP; Zhao, FK, Multiple solutions for a class of nonperiodic Dirac equations with vector potentials, Nonlinear Anal., 75, 5589-5600 (2012) · Zbl 1253.81059 [43] Zhang, J., Tang, X. H., Zhang, W.: Ground state solutions for nonperiodic Dirac equation with superquadratic nonlinearity, J. Math. Phys., 54 (2013) · Zbl 1284.81134 [44] Zhang, J.; Tang, XH; Zhang, W., Ground states for nonlinear Maxwell-Dirac system with magnetic field, J. Math. Anal. Appl., 421, 1573-1586 (2015) · Zbl 1304.35597 [45] Zhang, J.; Tang, XH; Zhang, W., Existence and multiplicity of stationary solutions for a class of Maxwell-Dirac system, Nonlinear Anal., 127, 298-311 (2015) · Zbl 1326.35305 [46] Zhang, J.; Tang, XH; Zhang, W., Ground state solutions for a class of nonlinear Maxwell-Dirac system, Topol. Meth. Nonl. Anal., 46, 785-798 (2015) · Zbl 1375.35425 [47] Zhang, J.; Zhang, W.; Xie, XL, Existence and concentration of semiclassical solutions for Hamiltonian elliptic system, Commu. Pure Appl. Anal., 15, 599-622 (2016) · Zbl 1333.35053 [48] Zhao, LG; Zhao, FK, On the existence of solutions for the Schrödinger-Poisson equations, J. Math. Anal. Appl., 346, 155-169 (2008) · Zbl 1159.35017 [49] Zelati, VC; Rabinowitz, PH, Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials, J. Amer. Math. Soc., 4, 693-727 (1991) · Zbl 0744.34045 [50] Zelati, V. Coti, Rabinowitz, P. H.: Homoclinic type solutions for a semilinear elliptic PDE on \(\mathbb{R}^N \), Comm. Pure Appl. Math., 45, 1217-1269 (1992) · Zbl 0785.35029 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.