Configuration spaces, transfer, and 2-nodal solutions of a semiclassical nonlinear Schrödinger equation. (English) Zbl 1126.35061

The authors establish lower bounds for the number of nodal bound states for the semiclassical nonlinear Schrödinger equation \(-\varepsilon ^{2}\Delta u+a\left( x\right) u=\left| u\right| ^{p-2}u\) in \({\mathbb R}^{N},\) with bounded and uniformly continuous potential \(a.\) The solutions have two nodal domains, and their positive and negative parts concentrate near the set of minimum points of \(a.\) The existence of infinitely many nodal solutions for fixed small \(\varepsilon \) is obtained. Variational techniques and Lusternik-Schnirelman theory are used. The paper provides the lower bounds for the cuplength of the configuration spaces.


35Q55 NLS equations (nonlinear Schrödinger equations)
35J20 Variational methods for second-order elliptic equations
47J30 Variational methods involving nonlinear operators
55R80 Discriminantal varieties and configuration spaces in algebraic topology
58E05 Abstract critical point theory (Morse theory, Lyusternik-Shnirel’man theory, etc.) in infinite-dimensional spaces
Full Text: DOI


[1] Ackermann N. and Bartsch Th. (2005). Superstable manifolds of semilinear parabolic problems. J. Dyn. Diff. Equ. 17: 115–173 · Zbl 1129.35428
[2] Ackermann, N., Bartsch, Th., Kaplicky, P., Quittner, P.: A priori bounds, nodal equilibria and connecting orbits in indefinite semilinear parabolic problems. Trans. Amer. Math. Soc., (in press) (2006)
[3] Alves C. and Soares S.H.M. (2004). On the location and profile of spike-layer nodal solutions to nonlinear Schrödinger equations. J. Math. Anal. Appl. 296: 563–577 · Zbl 1051.35081
[4] Ambrosetti A., Badiale M. and Cingolani S. (1997). Semiclassical states of nonlinear Schrödinger equations. Arch. Rat. Mech. Anal. 140: 285–300 · Zbl 0896.35042
[5] Ambrosetti A., Malchiodi A. and Secchi S. (2001). Multiplicity results for some nonlinear Schrödinger equations with potentials. Arch. Rat. Mech. Anal. 159: 253–271 · Zbl 1040.35107
[6] Bartsch T. and Weth T. (2005). Three nodal solutions of singularly perturbed elliptic equations on domains without topology. Ann. Inst. H. Poincaré, Anal. Non Lin. 22: 259–281 · Zbl 1114.35068
[7] Bartsch T. and Weth T. (2005). The effect of the domain’s configuration space on the number of nodal solutions of singularly perturbed elliptic equations. Top. Meth. Nonl. Anal. 26: 109–133 · Zbl 1152.35039
[8] Brezis H. and Lieb E. (1983). A relation between pointwise convergence of functions and convergence of functionals. Proc. Am. Math. Soc. 88: 486–490 · Zbl 0526.46037
[9] Cerami G. and Passaseo D. (2003). The effect of concentrating potentials in some singularly perturbed problems. Calc. Var. 17: 257–281 · Zbl 1290.35050
[10] Chabrowski J. (1999). Weak convergence methods for semilinear elliptic equations. World Scientific Publishing Co. Inc., River Edge NJ · Zbl 1059.35038
[11] Chang K.C. (1993). Infinite dimensional morse theory and multiple solution problems. Birkhäuser, Boston · Zbl 0779.58005
[12] Cingolani S. and Lazzo M. (1997). Multiple semiclassical standing waves for a class of nonlinear Schrödinger equations. Top. Meth. Nonl. Anal. 10: 397–408 · Zbl 0903.35018
[13] Clapp M. and Izquierdo G. (2001). Multiple positive symmetric solutions of a singularly perturbed elliptic equation. Top. Meth. Nonl. Anal. 18: 17–39 · Zbl 1199.35082
[14] Dancer E.N. and Yan S. (1999). A singularly perturbed elliptic problem in bounded domains with nontrivial topology. Adv. Diff. Eq. 4: 347–368 · Zbl 0947.35075
[15] Deimling K. (1977). Ordinary differential equations in banach spaces. Lect. Notes Math. 596. Springer, Berlin Heidelberg New York · Zbl 0361.34050
[16] Del Pino M. and Felmer P. (1996). Local mountain passes for semilinear elliptic problems in unbounded domains. Calc. Var. PDE 4: 121–137 · Zbl 0844.35032
[17] Del Pino M. and Felmer P. (1998). Multi-peak bound states for a nonlinear Schrödinger equation. Ann. Inst. H. Poincaré. Anal. Non Lin. 15: 127–149 · Zbl 0901.35023
[18] Dold A. (1972) Lectures on algebraic topology. Springer, Berlin Heidelberg Newyork · Zbl 0234.55001
[19] Dold A. (1976). The fixed point transfer of fibre-preserving maps. Math. Z. 148: 215–244 · Zbl 0329.55007
[20] Floer A. and Weinstein A. (1986). Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential. J. Funct. Anal. 69: 397–408 · Zbl 0613.35076
[21] Husemoller D. (1966). Fibre bundles. Springer, Berlin Heidelberg · Zbl 0144.44804
[22] Li Y.Y. (1997). On a singularly perturbed elliptic equation. Adv. Diff. Eq. 2: 955–980 · Zbl 1023.35500
[23] Lions P.L. (1984). The concentration-compactness principle in the calculus of variations. The locally compact case. Ann. Inst. Henri Poincaré, Anal. Non Lin. 1: 109–145 · Zbl 0541.49009
[24] Massey W. (1978). Homology and cohomology theory. Marcel Dekker, New York · Zbl 0377.55004
[25] McCleary, J.: User’s guide to spectral sequences. Mathematics Lecture Series 12, Publish or Perish, Wilmington, Delaware (1985) · Zbl 0577.55001
[26] Murayama M. (1983). On G-ANR’s and their G-homotopy types, Osaka J. Math. 20: 479–512 · Zbl 0531.57034
[27] Spanier E.H. (1966). Algebraic topology. McGraw-Hill, New York · Zbl 0145.43303
[28] Wang X. (1993). On concentration of positive bound states of nonlinear Schrödinger equations. Comm. Math. Phys. 153: 229–244 · Zbl 0795.35118
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.