Alves, Claudianor O.; Patricio, Geovany F. Existence of solution for a class of indefinite variational problems with discontinuous nonlinearity. (English) Zbl 1535.35049 J. Math. Sci., New York 266, No. 4, Series A, 635-663 (2022). Summary: This paper concerns the existence of a nontrivial solution for the following problem \[ (P)\qquad \begin{cases} -{\Delta} u + V(x)u \in \partial_u F(x,u)\text{ a.e. in }\mathbb{R}^N, \\u \in H^1(\mathbb{R}^N), \end{cases}\] where \(F(x,t)={{\int \limits}_0^t}f(x,s) ds\), \(f\) is a \(\mathbb{Z}^N \)-periodic measurable function and \(\lambda = 0\) does not belong to the spectrum of \(- \Delta + V\). Here, \( \partial_tF\) denotes the generalized gradient of \(F\) with respect to variable \(t\). Cited in 2 Documents MSC: 35J15 Second-order elliptic equations 35J61 Semilinear elliptic equations 35A01 Existence problems for PDEs: global existence, local existence, non-existence Keywords:second-order elliptic equation; discontinuous nonlinearity; existence × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] S. Alama, Y.Y. Li On “multibump” bound states for certain semilinear elliptic equations, Indiana Univ. Math. J. 41 (1992) 983-1026. · Zbl 0796.35043 [2] S. Angenent The shadowing lemma for elliptic PDE, in: Dynamics of Infinite-Dimensional Systems, Lisbon, 1986, in: NATO Adv. Sci. Inst. Ser. F Comput. Systems Sci., vol. 37, Springer, Berlin, (1987) 7-22. · Zbl 0653.35030 [3] V. Coti Zelati, P.H. Rabinowitz Homoclinic type solutions for a semilinear elliptic PDE on RN, Comm. Pure Appl. Math. 45 (1992) 1217-1269. · Zbl 0785.35029 [4] W. Kryszewski, A. Szulkin Generalized linking theorem with an application to semilinear Schrödinger equations, Adv. Differential Equations (1998), 441-472. · Zbl 0947.35061 [5] G. Arioli, A. Szulkin A Semilinear Schrödinger Equation in the Presence of a Magnetic Field, Arch. Rational Mech. Anal. (2003) 170:277. doi:10.1007/s00205-003-0274-5. · Zbl 1051.35082 [6] T. Barstch, Y. Ding On a nonlinear Schrödinger equation with periodic potential. Math. Ann., 313. 15-37. 10.1007/s002080050248. · Zbl 0927.35103 [7] J. Chabrowski, A. Szulkin On a semilinear Schrödinger equation with critical Sobolev exponent. Proc. Amer. Math. Soc. 130 (2001) 85-93. · Zbl 0984.35150 [8] A. Szulkin, W. Zou Homoclinic orbits for asymptotically linear Hamiltonian systems, J. Funct. Anal. 187 (2001) 25-41. · Zbl 0984.37072 [9] M. Schechter, W. Zou Weak linking theorems and Schrödinger equations with critical sobolev exponent, ESAIM: COCV 9 601-619 (2003) DOI: 10.1051/cocv:2003029. · Zbl 1173.35482 [10] N. Ackermann On a periodic Schrödinger equation with nonlocal superlinear part, Mathematische Zeitschrift, 2004, Volume 248, Number 2, Page 423. doi:10.1007/s00209-004-0663-y · Zbl 1059.35037 [11] J. M. B. do Ó, B. Ruf. On a Schrödinger equation with periodic potential and critical growth in R2. NoDEA Nonlinear Differential Equations Appl. 13 (2006) 167-192. · Zbl 1146.35363 [12] M.F. Furtado, R. Marchi Existence of solutions to asymptotically periodic Schrödinger equations, Electron. J. Differential Equations, Vol. 2017 (2017), No. 15, 1-7. · Zbl 1357.35139 [13] X.H. Tang New, conditions on nonlinearity for a periodic Schrödinger equation having zero as spectrum, J. Math. Anal. Appl. Volume 413, Issue 1, 1 May 2014, Pages 392-410. · Zbl 1312.35103 [14] X.H. Tang Non-Nehari manifold method for asymptotically periodic Schrödinger equations, Sci. China Math 58 (2015), 715-728. · Zbl 1321.35055 [15] X.H. Tang New super-quadratic conditions on ground state solutions for superlinear Schrödinger Equation. Adv. Nonlinear Stud 14 (2014), 361-373. · Zbl 1305.35036 [16] G.B. Li, A. Szulkin An asymptotically periodic Schrödinger equation with indefinite linear part. Commun. Contemp. Math, 2002, 4: 763-776. · Zbl 1056.35065 [17] S. Chen, C. Wang An infinite-dimensional linking theorem without upper semi-continuous assumption and its applications. J. Math. Anal. Appl. 420 (2014) 1552-1567. · Zbl 1328.35290 [18] C.O. Alves, G.F. Patricio Existence of solution for a class of elliptic equation with discontinuous nonlinearity and asymptotically linear, J. Math. Anal. Appl. 505, (2022), doi:10.1016/j.jmaa.2021.125640. · Zbl 1479.35258 [19] A. Pankov Periodic nonlinear Schrödinger equation with application to photonic crystals, Milan J. Math., 73 (2005), 259-287. · Zbl 1225.35222 [20] A. Pankov, K. Pflüger On a semilinear Schrödinger equation with periodic potential, Nonlinear Anal., 33 (1998), 593-690. · Zbl 0952.35047 [21] A. Szulkin, T. Weth Ground state solutions for some indefinite variational problems, J. Func. Anal., 257 (2009), 3802-3822. · Zbl 1178.35352 [22] C.O Alves, G. F. Germano Ground state solution for a class of indefinite variational problems with critical growth, J. Differential Equations, 265 (2018), 444-477. · Zbl 1394.35151 [23] C.O Alves, G.F. Germano Existence and concentration phenomena for a class of indefinite variational problems with critical growth, Potential Anal (2018), doi:10.1007/s11118-018-9734-2. · Zbl 1433.35022 [24] H. Zhang, J. Xu, F. Zhang Ground state solutions asymptotically periodic Schrödinger equations with indefinite linear part, Math. Meth. Appl. Sci 38 (2015), 113-122. · Zbl 1317.35024 [25] H. Zhang, J. Xu, F. Zhang On a class of semilinear Schrödinger equation with indefinite linear part, J. Math. Anal. Appl. 414 (2014), 710-724. · Zbl 1312.35105 [26] Y.H. Ding, S.X. Luan Multiple solutions for a class of nonlinear Schrödinger equations. J. Differential Equations 207 (2004) 423-457. · Zbl 1072.35166 [27] Q. Guo, J. Mederski Ground states of nonlinear Schrödinger equations with sum of periodic and inverse-square potentials, J. Differential Equations 260 (2016), 4180-4202. · Zbl 1335.35232 [28] S. Liu On superlinear Schrödinger equations with periodic potential, Calc. Var. Partial Differential Equations 45 (2012) 1-9. · Zbl 1247.35149 [29] X. Lin, X. Tang An asymptotically periodic and asymptotically linear Schrödinger equation with indefinite linear part, Comput. Math. Appl 70 (2015) 726-736. · Zbl 1443.35046 [30] K. C. Chang Variational methods for nondifferentiable functionals and their applications to partial differential equations. J. Math. Anal. Appl. 80, 102-129 (1981). · Zbl 0487.49027 [31] K. C. Chang On the multiple solutions of the elliptic differential equations with discontinuous nonlinear terms. Sci. Sin. 21, 139-158 (1978). · Zbl 0397.35057 [32] K. C. Chang The obstacle problem and partial differential equations with discontinuous nonlinearities. Commun. Pure Appl. Math. 33, 117-146 (1980). · Zbl 0405.35074 [33] A. Ambrosetti, M. Badiale The dual variational principle and elliptic problems with discontinuous nonlinearities. J. Math. Anal. Appl. 140, 363-373 (1989). · Zbl 0687.35033 [34] G. Cerami Soluzioni positive di problemi con parte non lineare discontinua e applicazione a un problema di frontiera libera. Boll. Un. Mat. Ital. B (6) 2, 321-338 (1983). · Zbl 0515.35025 [35] G. Cerami Metodi variazionalli nello studio di problemi al contorno con parte nonlineare discontinua. Rend. Circ. Mat.Palermo 32 (1983), 336-357 . · Zbl 0557.35045 [36] M. Badiale Some remarks on elliptic problems with discontinuous nonlinearities. Rend. Sem. Mat. Univ. Politec. Torino 51, 331-342 (1993). · Zbl 0817.35024 [37] T.L. Dinu Standing, wave solutions of Schrödinger systems with discontinuous nonlinearity in anisotropic media. Int. J. Math. Math. Sci. 1-13 (2006) [38] L. Gasiński, N. S. Papageorgiou Nonsmooth, Critical Point Theory and Nonlinear Boundary Value Problems, CHAPMAN & HALL/CRC, 2005. · Zbl 1058.58005 [39] N. Kourogenis, N. Papageorgiou Discontinuous quasilinear elliptic problems at resonance. Colloq. Math., Volume 78 (1998) pp. 213-223. · Zbl 0920.35061 [40] A. Ambrosetti, R. E. L. Turner Some discontinuous variational problems. Diff. Integral Equat. Vol. 1, (1988), 341-349. · Zbl 0728.35037 [41] M. Badiale, G. Tarantello Existence and multiplicity results for elliptic problems with critical growth and discontinuous nonlinearities. Nonlinear Anal. 29, 639-677 (1997). · Zbl 0877.35046 [42] S. A. Marano, D. Motreanu On a three critical points theorem for non-differentiable functions and applications to nonlinear boundary value problems. Nonlinear Anal., 48(1), 37-52 (2002). · Zbl 1014.49004 [43] V. D. Rădulescu Mountain pass theorems for nondifferentiable functions and applications, Proc. Japan Acad. Ser. A Math. Sci. 69A (1993), 193-198. · Zbl 0801.35019 [44] V. D. Rădulescu A Lusternik-Schnirelmann type theorem for locally Lipschitz functionals with applications to multivalued periodic problems. Proc. Japan Acad. Ser. A Math. Sci., 71(7), 164-167 (1995). · Zbl 0853.58031 [45] V. D. Rădulescu Nontrivial solutions for a multivalued problem with strong resonance, Glasg. Math. J., vol. 38, no. 1, pp. 53-59, 1996. · Zbl 0855.35139 [46] V. D. Rădulescu Hemivariational inequalities associated to multivalued problems with strong resonance, in Nonsmooth/Nonconvex Mechanics: Modeling, Analysis and Numerical Methods, D. Y.Gao, R.W.Ogden, and G. E. Stavroulakis,Eds., vol. 50 of Nonconvex Optim. Appl., pp. 333-348, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2001. · Zbl 0997.49012 [47] F.H. Clarke Generalized gradients and applications, Trans. Amer. Math. Soc. 205 (1975), 247-262. · Zbl 0307.26012 [48] F.H. Clarke Optimization and Nonsmooth Analysis, Wiley, New York 1983. · Zbl 0582.49001 [49] G. Rosário, S.A. Tersian An introduction to minimax theorems and their applications to differential equations (2001). · Zbl 0987.58004 [50] A. Adams, J.F. Fournier Sobolev Spaces, 2nd ed., Academic Press (2003). · Zbl 1098.46001 [51] N. Fukagai, M. Ito, K. Narukawa Positive solutions of quasilinear elliptic equations with critical Orlicz-Sobolev nonlinearity on RN, Funkcial. Ekvac. 49 (2006), 235-267. · Zbl 1387.35405 [52] M.N. Rao, Z.D. Ren Theory of Orlicz spaces, Marcel Dekker, New York (1985) [53] T.K. Donaldson, N.S. Trudinger Orlicz-Sobolev spaces and embedding theorems, J. Funct. Anal. 8 (1971), 52-75. · Zbl 0216.15702 [54] C.O Alves, J.V. Gonçalves, J.A. Santos Existence of solution for a partial differential inclusion in RN with steep potential well. Z. Angew. Math. Phys (2019). [55] M. Willem Minimax theorems, Birkhäuser, Boston, 1996. · Zbl 0856.49001 [56] R. Engelking General Topology, Monografie Matematyczne, tom 60, PWN-Polish Scientific Publishers, Warszawa 1977. · Zbl 0373.54002 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.