×

On the existence of solutions for Schrödinger-Maxwell systems in \(R^3\). (English) Zbl 1253.35166

Summary: In this paper we discuss the existence of solutions for the following Schrödinger-Maxwell systems \[ \begin{cases} -\Delta\psi+\lambda\psi+b(x)\phi\psi=a(x)|\psi|^{p-1}\psi \quad & \text{in} \, \mathbb R^3,\\ -\Delta\psi=4\pi b(x)\psi^2 \quad & \text{in} \, \mathbb R^3. \end{cases} \] Under suitable assumptions on \(a(x)\) and \(b(x)\), we establish existence results by variational methods.

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
35Q61 Maxwell equations
35J20 Variational methods for second-order elliptic equations
35J60 Nonlinear elliptic equations

References:

[1] N. Ackermann, On a periodic Schrödinger equation with nonlocal superlinear part , Math. Z. 248 (2004), 423-443. · Zbl 1059.35037 · doi:10.1007/s00209-004-0663-y
[2] A. Ambrosetti and M. Badiale, Homoclinics : Poincaré-Melnikov type results via a variational approach , Ann. I.H.P.-Analyse Nonlin. 15 (1998), 233-252. · Zbl 1004.37043 · doi:10.1016/S0294-1449(97)89300-6
[3] —, Variational perturbative methods and bifurcation of bound states from the essential spectrum , Proc. Royal Soc. Edinburgh 128 (1998), 1131-1161. · Zbl 0928.34029 · doi:10.1017/S0308210500027268
[4] A. Ambrosetti, M. Badiale and S. Cingolani, Semiclassical states of nonlinear Schrödinger equations , Arch. Rat. Mech. Anal. 140 (1997), 285-300. · Zbl 0896.35042 · doi:10.1007/s002050050067
[5] A. Ambrosetti, A. Malchiodi and S. Secchi, Multiplicity results for some nonlinear Schrödinger equations with potentials , Arch. Rat. Mech. Anal. 159 (2001), 253-271. · Zbl 1040.35107 · doi:10.1007/s002050100152
[6] A. Ambrosetti and P.H. Rabinowitz, Dual variational methods in critical point theory and applications , J. Funct. Anal. 14 (1973), 349-381. · Zbl 0273.49063 · doi:10.1016/0022-1236(73)90051-7
[7] —, Multiple bound states for the Schrödinger-Poisson equation , Comm. Cont. Math. 10 (2008), 391-404. · Zbl 1188.35171 · doi:10.1142/S021919970800282X
[8] A. Azzollini and A. Pomponio, Ground state solutions for the nonlinear Schrödinger-Maxwell equations , J. Math. Anal. Appl. 345 (2008), 90-108. · Zbl 1147.35091 · doi:10.1016/j.jmaa.2008.03.057
[9] M. Badiale and A. Pomponio, Bifurcation results for semilinear elliptic problems in \(\r^N\) , Proc. Roy. Soc. Edinburgh 134 (2004), 11-32. · Zbl 1067.35027 · doi:10.1017/S0308210500003048
[10] V. Benci and D. Fortunato, An eigenvalue problem for the Schrödinger-Maxwell equations , Topol. Meth. Nonlinear Anal. 11 (1998), 283-293. · Zbl 0926.35125
[11] S. Cingolani, Semiclassical stationary states of nonlinear Schrödinger equation with external magnetic field , J. Diff. Equations 188 (2003), 52-79. · Zbl 1062.81056 · doi:10.1016/S0022-0396(02)00058-X
[12] G. Coclite and V. Georgiev, Solitary waves for Maxwell-Schrödinger equations , Elec. J. Differental Equations 94 (2004), 1-31. · Zbl 1064.35180
[13] T. D’Aprile and D. Mugnai, Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations , Proc. Roy. Soc. Edin. 134 (2004), 1-14. · Zbl 1064.35182 · doi:10.1017/S030821050000353X
[14] T. D’Aprile and J. Wei, On bound states concentrating on spheres for the Maxwell-Schrödinger equation , SIAM J. Math. Anal. 37 (2005), 321-342. · Zbl 1096.35017 · doi:10.1137/S0036141004442793
[15] M. del Pino and P. Felmer, Semi-classical states of nonlinear Schrödinger equations : A variational reduction method , Math. Ann. 324 (2002), 1-32. · Zbl 1030.35031 · doi:10.1007/s002080200327
[16] I. Ianni, Solutions of the Schródinger-Poisson system concentrating on spheres , Part II: Existence , Math. Models Meth. Appl. Sci. 19 (2009), 877-910. · Zbl 1187.35236 · doi:10.1142/S0218202509003656
[17] —, Solutions of the Schrödinger-Poisson system concentrating on spheres , Part I: Necessary conditions , Math. Models Meth. Appl. Sci. 19 (2009), 707-720. · Zbl 1173.35687 · doi:10.1142/S0218202509003589
[18] I. Ianni and G. Vaira, On concentration of positive bound states for the Schrödinger-Poisson problem with potentials , Adv. Nonlin. Stud. 8 (2008), 573-595. · Zbl 1216.35138
[19] E. Lieb and M. Loss, Analysis , Grad. Stud. Math., American Mathematical Society, Providence, Rhode island, 2001. · Zbl 0966.26002
[20] D. Ruiz, The Schrödinger-Poisson equation under the effect of a nonlinear local term , J. Funct. Anal. 237 (2006), 655-674. · Zbl 1136.35037 · doi:10.1016/j.jfa.2006.04.005
[21] —, Semiclassical states for coupled Schrödinger-Maxwell equations concentration around a sphere , Math. Models Meth. Appl. Sci. 15 (2005), 141-164. · Zbl 1074.81023 · doi:10.1142/S0218202505003939
[22] C. Stuart, Bifurcation from the essential spectrum for some non-compact non-linearities , Math. Meth. Appl. Sci. 11 (1989), 525-542. · Zbl 0678.58013 · doi:10.1002/mma.1670110408
[23] —, Bifurcation of homoclinic orbits and bifurcation from the essential spectrum , SIAM J. Math. Anal. 20 (1989), 1145-1171. · Zbl 0704.34025 · doi:10.1137/0520076
[24] —, Bifurcation in \(L^p({\mathbb R}^N)\) for a semilinear elliptic equation , Proc. Lond. Math. Soc. 57 (1988), 511-541. · Zbl 0673.35005 · doi:10.1112/plms/s3-57.3.511
[25] —, A global branch of solutions to a semilinear elliptic equation on an unbounded interval , Proc. Roy. Soc. Edinb. 101 (1985), 273-282. · Zbl 0582.34010 · doi:10.1017/S0308210500020825
[26] M.B. Yang, Z.F. Shen and Y.H. Ding, Multiple semiclassical solutions for the nonlinear Maxwell-Schrödinger system , Nonl. Anal. TMA 71 (2009), 730-739. · Zbl 1171.35478 · doi:10.1016/j.na.2008.10.105
[27] Z.P. Wang and H.S. Zhou, Positive solution for a nonlinear stationary Schrödinger-Poisson system in \({\mathbb R}^3\) , Discrete Continuous Dynamical Syst. 18 (2007), 809-816. · Zbl 1133.35427 · doi:10.3934/dcds.2007.18.809
[28] M. Willem, Minimax theorems , Birkhauser, Boston, 1996. \noindentstyle · Zbl 0856.49001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.