Duan, Shengzhong; Wu, Xian Solutions for a class of nonperiodic superquadratic Hamiltonian elliptic systems involving gradient terms. (English) Zbl 1375.35154 Discrete Dyn. Nat. Soc. 2017, Article ID 9125486, 15 p. (2017). Summary: In the present paper, we consider the following Hamiltonian elliptic system (HES): \(- \Delta u + b \left(x\right) \cdot \nabla u + V \left(x\right) u = H_v \left(x, u, v\right)\), \(x \in \mathbb{R}^N\), \(- \Delta v - b \left(x\right) \cdot \nabla v + V \left(x\right) v = H_u \left(x, u, v\right)\), \(x \in \mathbb{R}^N \). A new existence result of nontrivial solutions is obtained for the system (HES) via variational methods for strongly indefinite problems, which generalizes some known results in the literatures. MSC: 35J47 Second-order elliptic systems 35J50 Variational methods for elliptic systems Keywords:Hamiltonian elliptic system; variational methods PDF BibTeX XML Cite \textit{S. Duan} and \textit{X. Wu}, Discrete Dyn. Nat. Soc. 2017, Article ID 9125486, 15 p. (2017; Zbl 1375.35154) Full Text: DOI OpenURL References: [1] Lions, J.-L., Optimal Control of Systems Governed by Partial Differential Equations, (1971), Berlin, Germany: Springer, Berlin, Germany · Zbl 0203.09001 [2] Itô, S., Diffusion Equations. Diffusion Equations, Translations of Mathematical Monographs, 114, (1992), Providence, RI, USA: American Mathematical Society, Providence, RI, USA [3] Nagasawa, M., Schrödinger Equations and Diffusion Theory. Schrödinger Equations and Diffusion Theory, Monographs in Mathematics, 86, (1993), Basel, Switzerland: Birkhäuser, Basel, Switzerland · Zbl 0780.60003 [4] De Figueiredo, D. G.; Yang, J., Decay, symmetry and existence of solutions of semilinear elliptic systems, Nonlinear Analysis. Theory, Methods & Applications. An International Multidisciplinary Journal, 33, 3, 211-234, (1998) · Zbl 0938.35054 [5] Sirakov, B., On the existence of solutions of Hamiltonian elliptic systems in \(R^N\), Advances in Differential Equations, 5, 10–12, 1445-1464, (2000) · Zbl 1213.35223 [6] Zhao, F. K.; Zhao, L. G.; Ding, Y. H., Multiple solutions for asymptotically linear elliptic systems, Nonlinear Differential Equations and Applications, 15, 6, 673-688, (2008) · Zbl 1170.35384 [7] Alves, C. O.; Carrião, P. C.; Miyagaki, O. H., On the existence of positive solutions of a perturbed Hamiltonian system in R, Journal of Mathematical Analysis and Applications, 276, 2, 673-690, (2002) · Zbl 1056.35060 [8] Ávila, A. I.; Yang, J., Multiple solutions of nonlinear elliptic systems, Nonlinear Differential Equations and Applications, 12, 4, 459-479, (2005) · Zbl 1146.35346 [9] Ávila, A. I.; Yang, J., On the existence and shape of least energy solutions for some elliptic systems, Journal of Differential Equations, 191, 2, 348-376, (2003) · Zbl 1109.35325 [10] Bartsch, T.; Ding, Y., Homoclinic solutions of an infinite-dimensional Hamiltonian system, Mathematische Zeitschrift, 240, 2, 289-310, (2002) · Zbl 1008.37040 [11] Bartsch, T.; De Figueiredo, D. G., Infinitely many solutions of nonlinear elliptic systems, Nonlinear Differential Equations and Applications, 35, 51-67, (1999) · Zbl 0922.35049 [12] Busca, J.; Sirakov, B., Symmetry results for semilinear elliptic systems in the whole space, Journal of Differential Equations, 163, 1, 41-56, (2000) · Zbl 0952.35033 [13] Lair, A. V.; Wood, A. W., Existence of entire large positive solutions of semilinear elliptic systems, Journal of Differential Equations, 164, 2, 380-394, (2000) · Zbl 0962.35052 [14] Li, G.; Yang, J., Asymptotically linear elliptic systems, Communications in Partial Differential Equations, 29, 5-6, 925-954, (2004) · Zbl 1140.35406 [15] Pistoia, A.; Ramos, M., Locating the peaks of the least energy solutions to an elliptic system with Neumann boundary conditions, Journal of Differential Equations, 201, 1, 160-176, (2004) · Zbl 1246.35089 [16] Schechter, M.; Zou, W. M., Homoclinic orbits for Schrödinger systems, Michigan Mathematical Journal, 51, 1, 59-71, (2003) · Zbl 1195.35281 [17] Yang, J., Nontrivial solutions of semilinear elliptic systems in \(R^N\), Electronic Journal of Differential Equations, 6, 343-357, (2001) · Zbl 1099.35514 [18] Wang, J.; Xu, J.; Zhang, F., Existence of solutions for nonperiodic superquadratic Hamiltonian elliptic systems, Nonlinear Analysis. Theory, Methods & Applications, 72, 3-4, 1949-1960, (2010) · Zbl 1183.35115 [19] Zhao, F.; Ding, Y., On Hamiltonian elliptic systems with periodic or non-periodic potentials, Journal of Differential Equations, 249, 12, 2964-2985, (2010) · Zbl 1205.35080 [20] Ding, Y. H., Variational Methods for Strongly Indefinite Problems, (2008), Singapore: World Scientific Press, Singapore [21] Ding, Y.; Lee, C., Existence and exponential decay of homoclinics in a nonperiodic superquadratic Hamiltonian system, Journal of Differential Equations, 246, 7, 2829-2848, (2009) · Zbl 1162.70014 [22] Ding, Y.; Wei, J., Stationary states of nonlinear Dirac equations with general potentials, Reviews in Mathematical Physics, 20, 8, 1007-1032, (2008) · Zbl 1170.35082 [23] Ding, Y. H.; Szulkin, A., Bound states for semilinear Schrödinger equations with sign-changing potential, Calculus of Variations and Partial Differential Equations, 29, 3, 397-419, (2007) · Zbl 1119.35082 [24] Kryszewski, W.; Szulkin, A., Generalized linking theorem with an application to semilinear Schrödinger equations, Advances in Differential Equations, 3, 3, 441-472, (1998) · Zbl 0947.35061 [25] Szulkin, A.; Zou, W., Homoclinic orbits for asymptotically linear Hamiltonian systems, Journal of Functional Analysis, 187, 1, 25-41, (2001) · Zbl 0984.37072 [26] Troestler, C.; Willem, M., Nontrivial solution of a semilinear Schrödinger equation, Communications in Partial Differential Equations, 21, 9-10, 1431-1449, (1996) · Zbl 0864.35036 [27] Willem, M., Minimax Theorems. Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, 24, (1996), Boston, Mass, USA: Birkhäuser, Boston, Mass, USA [28] Ackermann, N., A superposition principle and multibump solutions of periodic Schrödinger equations, Journal of Functional Analysis, 234, 2, 277-320, (2006) · Zbl 1126.35057 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.