A perturbation approach to studying sign-changing solutions of Kirchhoff equations with a general nonlinearity. (English) Zbl 07534195

Summary: By employing a nonlocal perturbation approach and the method of invariant sets of descending flow, this manuscript investigates the existence and multiplicity of sign-changing solutions to a class of semilinear Kirchhoff equations in the following form \[ -\left( a+ b\int_{\mathbb{R}^3}|\nabla u|^2\right) \Delta{u}+V(x)u=f(u),\,\,x\in \mathbb{R}^3, \] where \(a,b>0\) are constants, \(V\in C(\mathbb{R}^3,\mathbb{R}), f\in C(\mathbb{R},\mathbb{R})\). The methodology proposed in the current paper is robust, in the sense that, neither the monotonicity condition on \(f\) nor the coercivity condition on \(V\) is required. Our result improves the study made by Y. Deng et al. [J. Funct. Anal. 269, No. 11, 3500–3527 (2015; Zbl 1343.35081)] in the sense that, in the present paper, the nonlinearities include the power-type case \(f(u)=|u|^{p-2}u\) for \(p\in (2,4)\), in which case, it remains open in the existing literature whether there exist infinitely many sign-changing solutions to the problem above. Moreover, energy doubling is established, namely, the energy of sign-changing solutions is strictly larger than two times that of the ground state solutions for small \(b>0\).


35J62 Quasilinear elliptic equations
35A01 Existence problems for PDEs: global existence, local existence, non-existence


Zbl 1343.35081
Full Text: DOI


[1] Ackermann, N.; Weth, T., Multibump solutions of nonlinear periodic Schrödinger equations in a degenerate setting, Commun. Contemp. Math., 7, 1-30 (2005) · Zbl 1070.35083
[2] Alves, C.; Corrêa, F.; Figueiredo, G., On a class of nonlocal elliptic problems with critical growth, Differ. Equ. Appl., 2, 409-417 (2010) · Zbl 1198.35281
[3] Alves, C.; Corrêa, F.; Ma, T-F, Positive solutions for a quasilinear elliptic equation of Kirchhoff type, Comput. Math. Appl., 49, 85-93 (2005) · Zbl 1130.35045
[4] Alves, C.; Figueiredo, G., Nonlinear perturbations of a periodic Krichhoff equation in \({\mathbb{R}}^N \), Nonlinear Anal., 75, 2750-2759 (2012) · Zbl 1264.45008
[5] Arosio, A.; Panizzi, S., On the well-posedness of the Kirchhoff string, Trans. Am. Math. Soc., 348, 305-330 (1996) · Zbl 0858.35083
[6] Azzollini, A., The elliptic Kirchhoff equation in \({\mathbb{R}}^N\) perturbed by a local nonlinearity, Differ. Int. Equ., 25, 543-554 (2012) · Zbl 1265.35069
[7] Bartsch, T.; Liu, Z.; Weth, T., Sign-changing solutions of superlinear Schrödinger equations, Commun. Partial Differ. Equ., 29, 25-42 (2004) · Zbl 1140.35410
[8] Bartsch, T.; Liu, Z.; Weth, T., Nodal solutions of a p-Laplacian equation, Proc. Lond. Math. Soc., 91, 129-152 (2005) · Zbl 1162.35364
[9] Bartsch, T.; Willem, M., Infinitely many radial solutions of a semilinear elliptic problem on \({\mathbb{R}}^N\), Arch. Ration. Mech. Anal., 124, 261-276 (1993) · Zbl 0790.35020
[10] Cao, D.; Zhu, X., On the existence and nodal character of semilinear elliptic equations, Acta Math. Sci., 8, 345-359 (1988) · Zbl 0668.35029
[11] Cassani, D.; Liu, Z.; Tarsi, C.; Zhang, J., Multiplicity of sign-changing solutions for Kirchhoff-type equations, Nonlinear Anal., 186, 145-161 (2019) · Zbl 1421.35098
[12] Cassani, D.; Vilasi, L.; Zhang, J., Concentration phenomena at saddle points of potential for Schrödinger-Poisson systems, Commun. Pure Appl. Anal., 20, 1737 (2021) · Zbl 1466.35126
[13] Cavalcanti, M.; Cavalcanti, V.; Soriano, J., Global existence and uniform decay rates for the Kirchhoff-Carrier equation with nonlinear dissipation, Adv. Differ. Equ., 6, 701-730 (2001) · Zbl 1007.35049
[14] Cerami, G.; Solimini, S.; Struwe, M., Some existence results for superlinear elliptic boundary value problems involving critical exponents, J. Funct. Anal., 69, 289-306 (1986) · Zbl 0614.35035
[15] Chang, K.; Methods, T., Heat method in nonlinear elliptic equations, Variational Methods and Their Applications (Taiyuan, 2002), 65-76 (2003), River Edge: World Sci Publ, River Edge
[16] Chang, K.; Jiang, M., Dirichlet problem with indefinite nonlinearities, Calc. Var. Partial Differ. Equ., 20, 257-282 (2004) · Zbl 1142.35378
[17] Chipot, M.; Lovat, B., Some remarks on non local elliptic and parabolic problems, Nonlinear Anal., 30, 4619-4627 (1997) · Zbl 0894.35119
[18] Deng, Y.; Peng, S.; Shuai, W., Existence and asymptotic behavior of nodal solutions for the Kirchhoff-type problems in \({\mathbb{R}}^3\), J. Funct. Anal., 269, 3500-3527 (2015) · Zbl 1343.35081
[19] Figueiredo, G.; Ikoma, N.; Junior, J., Existence and concentration result for the Kirchhoff type equations with general nonlinearities, Arch. Ration. Mech. Anal., 213, 931-979 (2014) · Zbl 1302.35356
[20] Gu, L.; Jin, H.; Zhang, J., Sign-changing solutions for nonlinear Schrödinger-Poisson systems with subquadratic or quadratic growth at infinity, Nonlinear Anal., 198, 111897 (2020) · Zbl 1447.35147
[21] He, X.; Zou, W., Existence and concentration behavior of positive solutions for a Kirchhoff equation in \({\mathbb{R}}^3\), J. Differ. Equ., 252, 1813-1834 (2012) · Zbl 1235.35093
[22] He, Y.; Li, G., Standing waves for a class of Kirchhoff type problems in \({\mathbb{R}}^3\) involving critical Sobolev exponents, Calc. Var. Partial Differ. Equ., 54, 3067-3106 (2015) · Zbl 1328.35046
[23] He, Y., Concentrating bounded states for a class of singularly perturbed Kirchhoff type equations with a general nonlinearity, J. Differ. Equ., 261, 6178-6220 (2016) · Zbl 1364.35082
[24] Jeanjean, L., On the existence of bounded Palais-Smale sequence and application to a Landesman-Lazer type problem set on \({\mathbb{R}}^N\), Proc. R. Soc. Edinb. Sect. A, 129, 787-809 (1999) · Zbl 0935.35044
[25] Kabeya, Y., Tanaka, K.: Uniqueness of positive radial solutions of semilinear elliptic equations in \({\mathbb{R}}^N\) and Séré’s non-degeneracy condition. Commun. Partial Differ. Equ. 24, 563-598 (1999) · Zbl 0930.35064
[26] Kirchhoff, G.: Mechanik. Teubner, Leipzig (1883)
[27] Kuzin, I.; Pohozaev, S., Entire Solutions of Semilinear Elliptic Equations (1997), Boston: Birkhäuser, Boston · Zbl 0882.35003
[28] Li, G.; Ye, H., Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in \({\mathbb{R}}^3\), J. Differ. Equ., 257, 566-600 (2014) · Zbl 1290.35051
[29] Liang, Z.; Li, F.; Shi, J., Positive solutions to Kirchhoff type equations with nonlinearity having prescribed asymptotic behavior, Ann. Inst. H. Poincare Anal. Non Linéaire, 31, 155-167 (2014) · Zbl 1288.35456
[30] Lions, J., On some questions in boundary value problems of mathematical physics, North-Holland Math. Stud., 30, 284-346 (1978)
[31] Liu, J.; Liu, X.; Wang, Z-Q, Multiple mixed states of nodal solutions for nonlinear Schrödinger systems, Calc. Var. Partial Differ. Equ., 52, 565-586 (2015) · Zbl 1311.35291
[32] Liu, Z.; Wang, Z-Q; Zhang, J., Infinitely many sign-changing solutions for the nonlinear Schrödinger-Poisson system, Ann. Mat., 195, 775-794 (2016) · Zbl 1341.35041
[33] Liu, Z.; Guo, S., Existence of positive ground state solutions for Kirchhoff type problems, Nonlinear Anal., 120, 1-13 (2015) · Zbl 1318.35121
[34] Liu, Z.; Squassina, M.; Zhang, J., Ground states for fractional Kirchhoff equations with critical nonlinearity in low dimension, Nonlinear Differ. Equ. Appl., 24, 50 (2017) · Zbl 1375.35500
[35] Liu, Z.; Zhang, Z.; Huang, S., Existence and nonexistence of positive solutions for a static Schrödinger-Poisson-Slater equation, J. Differ. Equ., 266, 5912-5941 (2019) · Zbl 1421.35156
[36] Liu, Z.; Ouyang, Z.; Zhang, J., Existence and multiplicity of sign-changing standing waves for a gauged nonlinear Schrödinger equation in \({\mathbb{R}}^2\), Nonlinearity, 32, 3082-3111 (2019) · Zbl 1421.35155
[37] Liu, Z.; Siciliano, G., A perturbation approach for the Schrödinger-Born-Infeld system: solutions in the subcritical and critical case, J. Math. Anal. Appl., 503, 125326 (2021) · Zbl 1471.35122
[38] Liu, Z., Luo, H., Zhang, J.: Existence and multiplicity of bound state solutions to a Kirchhoff type equation with a general nonlinearity (2021). arXiv:2102.13422v1 · Zbl 1485.35216
[39] Lu, S., Signed and sign-changing solutions for a Kirchhoff-type equation in bounded domains, J. Math. Anal. Appl., 432, 965-982 (2015) · Zbl 1343.35089
[40] Ma, T.; Rivera, J., Positive solutions for a nonlinear nonlocal elliptic transmission problem, Appl. Math. Lett., 16, 243-248 (2003) · Zbl 1135.35330
[41] Mao, A.; Zhang, Z., Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition, Nonlinear Anal., 70, 1275-1287 (2009) · Zbl 1160.35421
[42] Nie, J.; Wu, X., Existence and multiplicity of non-trivial solutions for Schrödinger-Kirchhoff-type equations with radial potential, Nonlinear Anal., 75, 3470-3479 (2012) · Zbl 1239.35131
[43] Perera, K.; Zhang, Z., Nontrivial solutions of Kirchhoff-type problems via the Yang index, J. Differ. Equ., 221, 246-255 (2006) · Zbl 1357.35131
[44] Shuai, W., Sign-changing solutions for a class of Kirchhoff-type problem in bounded domains, J. Differ. Equ., 259, 1256-1274 (2015) · Zbl 1319.35023
[45] Strauss, W., Existence of solitary waves in higher dimensions, Commun. Math. Phys., 55, 149-162 (1977) · Zbl 0356.35028
[46] Struwe, M., On the evolution of harmonic mappings of Riemannian surfaces, Comment. Math. Helv., 60, 558-581 (1985) · Zbl 0595.58013
[47] Sun, D.; Zhang, Z., Existence and asymptotic behaviour of ground state solutions for Kirchhoff-type equations with vanishing potentials, Z. Angew. Math. Phys., 70, 37 (2019) · Zbl 1412.35126
[48] Sun, J., Li, L., Cencelj, M., Gabrov \(\check{s}\) ek, B.: Infinitely many sign-changing solutions for Kirchhoff type problems in \({\mathbb{R}}^3\). Nonlinear Anal. (2019). doi:10.1016/j.na.2018.10.007
[49] Sun, J.; Wu, T., Existence and multiplicity of solutions for an indefinite Kirchhoff-type equation in bounded domains, Proc. R. Soc. Edinb. Sect. A, 146, 435-448 (2016) · Zbl 1348.35067
[50] Tang, X.; Cheng, B., Ground state sign-changing solutions for Kirchhoff type problems in bounded domains, J. Differ. Equ., 261, 2384-2402 (2016) · Zbl 1343.35085
[51] Wang, J.; Tian, L.; Xu, J.; Zhang, F., Multiplicity and concentration of positive solutions for a Kirchhoff type problem with critical growth, J. Differ. Equ., 253, 2314-2351 (2012) · Zbl 1402.35119
[52] Weth, T., Energy bounds for entire nodal solutions of autonomous superlinear equations, Calc. Var. Partial Differ. Equ., 27, 421-437 (2006) · Zbl 1151.35365
[53] Wu, X., Existence of nontrivial solutions and high energy solutions for Schrödinger-Kirchhoff-type equations in \({\mathbb{R}}^N\), Nonlinear Anal. RWA, 12, 1278-1287 (2011) · Zbl 1208.35034
[54] Xie, Q.; Ma, S.; Zhang, X., Positive ground state solutions for some non-autonomous Kirchhoff type problems, Rocky Mt. J. Math., 47, 329-350 (2017) · Zbl 1378.35128
[55] Zhang, Z.; Perera, K., Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow, J. Math. Anal. Appl., 317, 456-463 (2006) · Zbl 1100.35008
[56] Zou, W., Sign-Changing Critical Points Theory (2008), New York: Springer, New York · Zbl 1159.49010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.