Existence and concentration of ground state solutions for singularly perturbed nonlocal elliptic problems. (English) Zbl 1369.35023

The Kirchhoff-type equation with Hartree-type nonlinearity
\[ -\bigg(\varepsilon^2a+\varepsilon b\int_{\mathbb R^3}|\nabla u|^2dx\bigg)\Delta u+V(x)u = \varepsilon^{\alpha-3}(W_\alpha(x)\ast|u|^p)|u|^{p-2} \]
is studied, where \(\varepsilon>0\) is a parameter, \(a>0\), \(b\geq0\) are constants, \(W_\alpha(x)=|x|^{-\alpha}\), \(\alpha\in(0,3)\), \(p\in[2,6-\alpha)\), and \(V\in C(\mathbb R^3,\mathbb R)\) is an external potential satisfying the condition
\[ \liminf_{|x|\to\infty}V(x)>V_0=\inf_{\mathbb R^3}V(x)>0. \] Kirchhoff-type equations arise in various models of physical or biological systems, and the Hartree-type nonlinearities \((w(x)\ast G(u))G'(u)\) with \(G\in C^1(\mathbb R,\mathbb R)\) appear naturally in many physical applications.
A solution \(u_0\) of the problem with \(\varepsilon=0\) is called ground state solution if its energy is minimal among the energies of all nontrivial solutions to the problem with positive \(\varepsilon\). The author uses a variational approach to prove that for sufficiently small parameter \(\varepsilon\) there exist positive ground state solutions \(w_\varepsilon\in H^1(\mathbb R^3)\) with the following properties:
(i) \(w_\varepsilon\) has a maximum point \(x_\varepsilon\in\mathbb R^3\) whose distance from the set \(\{x\in\mathbb R^3: V(x)=V_0\}\) vanishes for \(\varepsilon\to0^+\).
(ii) A subsequence of \(\{w_\varepsilon(x_\varepsilon+\varepsilon x)\}\) converges in \(H^1(\mathbb R^3)\) to the ground state solution of the problem with \(\varepsilon=0\) and \(V(x)\) replaced with \(V_0\).
(iii) There exist \(C,\xi>0\) such that \(w_\varepsilon(x)\leq C\exp\bigl(-\frac\xi\varepsilon|x-x_\varepsilon|\bigr)\) for all \(x\in\mathbb R^3\).


35J60 Nonlinear elliptic equations
Full Text: DOI


[1] Ackermann, N.: On a periodic Schrödinger equation with nonlocal superlinear part. Math. Z. 248, 423-443 (2004) · Zbl 1059.35037
[2] Alves, C.O., Correa, F.J.S.A., Ma, T.F.: Positive solutions for a quasilinear elliptic equation of Kirchhoff type. Comput. Math. Appl. 49, 85-93 (2005) · Zbl 1130.35045
[3] Alves, C.O., Yang, M.: Existence of semiclassical ground state solutions for a generalized Choquard equation. J. Differ. Equ. 257, 4133-4164 (2014) · Zbl 1309.35036
[4] Cingolani, S., Clapp, M., Secchi, S.: Multiple solutions to a magnetic nonlinear Choquard equation. Z. Angew. Math. Phys. 63, 233-248 (2012) · Zbl 1247.35141
[5] Cingolani, S., Secchi, S., Squassina, M.: Semi-classical limit for Schrödinger equations with magnetic field and Hartree-type nonlinearities. Proc. R. Soc. Edinb. Sect. A 140, 973-1009 (2010) · Zbl 1215.35146
[6] Clapp, M., Salazar, D.: Positive and sign changing solutions to a nonlinear Choquard equation. J. Math. Anal. Appl. 407, 1-15 (2013) · Zbl 1310.35114
[7] He, Y., Li, G., Peng, S.: Concentrating bound states for Kirchhoff type problem in \[\mathbb{R}^3\] R3 involving critical Sobolev exponents. Adv. Nonlinear Stud. 14, 441-468 (2014) · Zbl 1305.35033
[8] He, X., Zou, W.: Existence and concentration behavior of positive solutions for a Kirchhoff equation in \[\mathbb{R}^3\] R3. J. Differ. Equ. 252, 1813-1834 (2012) · Zbl 1235.35093
[9] Kirchhoff, G.: Mechanik. Teubner, Leipzig (1883) · JFM 08.0542.01
[10] Lieb, E.H., Loss, M.: Analysis. In: Graduate Studies in Mathematics, vol. 14, 2nd edn. AMS, Providence (2001)
[11] Lieb, E.H.: Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation. Stud. Appl. Math. 57, 93-105 (1977) · Zbl 0369.35022
[12] Lieb, E.H., Simon, B.: The Hartree-Fock theory for Coulomb systems. Commun. Math. Phys. 53, 185-194 (1977)
[13] Lions, J.L.: On some questions in boundary value problems of mathematical physics. North-Holl. Math. Stud. 30, 284-346 (1978) · Zbl 0404.35002
[14] Lions, P.L.: The Choquard equation and related questions. Nonlinear Anal. 4, 1063-1072 (1980) · Zbl 0453.47042
[15] Liu, W., He, X.: Multiplicity of high energy solutions for superlinear Kirchhoff equations. J. Appl. Math. Comput. 39, 473-487 (2012) · Zbl 1295.35226
[16] Lü, D.: A note on Kirchhoff-type equations with Hartree-type nonlinearities. Nonlinear Anal. 99, 35-48 (2014) · Zbl 1286.35108
[17] Ma, L., Zhao, L.: Classification of positive solitary solutions of the nonlinear Choquard equation. Arch. Ration. Mech. Anal. 195, 455-467 (2010) · Zbl 1185.35260
[18] Moroz, V., Van Schaftingen, J.: Ground states of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics. J. Funct. Anal. 265, 153-184 (2013) · Zbl 1285.35048
[19] Moroz, V., Van Schaftingen, J.: Semi-classical states for the Choquard equation. Calc. Var. Partial Differ. Equ. 52, 199-235 (2015) · Zbl 1309.35029
[20] Penrose, R.: On gravity’s role in quantum state reduction. Gen. Relativ. Gravit. 28, 581-600 (1996) · Zbl 0855.53046
[21] Rabinowitz, P.H.: On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys. 43, 270-291 (1992) · Zbl 0763.35087
[22] Wang, J., Tian, L., Xu, J., Zhang, F.: Multiplicity and concentration of positive solutions for a Kirchhoff type problem with critical growth. J. Differ. Equ. 253, 2314-2351 (2012) · Zbl 1402.35119
[23] Willem, M.: Minimax theorems. In: Progress in Nonlinear Differential Equations and Their Applications, vol. 24. Birkhäuser, Boston (1996) · Zbl 0856.49001
[24] Wu, X.: Existence of nontrivial solutions and high energy solutions for Schrödinger-Kirchhoff-type equations in \[R^N\] RN. Nonlinear Anal. Real World Appl. 12, 1278-1287 (2011) · Zbl 1208.35034
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.