×

Optimal structural design family by genetic search and ant colony approach. (English) Zbl 1257.74128

Summary: Purpose: Genetic Algorithm, as a generalized constructive search method, has already been applied to various fields of optimization problems using different encoding schemes. In conventional GAs, the optimum solution is usually announced as the fittest feasible individual achieved in a limited number of generations. In this paper, such a pseudo-optimum is extended to a neighborhood structure, known as optimal design family.
Design/methodology/approach: In this paper, the constructive feature of genetic search is combined with trail update strategy of ant colony approach in a discrete manner, in order to sample more competitive individuals from various subspaces of the search space as a dynamic-memory of updating design family.
Findings: The proposed method is applied to structural layout and size optimization utilizing an efficient integer index encoding and its appropriate genetic operators. Different applications of the proposed method are illustrated using three truss and frame examples. In the first example, topological classes are identified during layout optimization. In the second example, an objective function containing the stress response, displacement response, and the weight of the structure is considered to solve the optimal design of non-braced frames. This approach allows the selection of less sensitive designs among the family of solutions. The third example is selected for eigenvalue maximization with minimal number of bracings and structural weight for braced frames.
Originality/value: In this paper, a pseudo-optimum is extended to a neighborhood structure, known as optimal design family.

MSC:

74P10 Optimization of other properties in solid mechanics
74S30 Other numerical methods in solid mechanics (MSC2010)
92D99 Genetics and population dynamics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1016/0045-7949(83)90169-4 · Zbl 0499.73097 · doi:10.1016/0045-7949(83)90169-4
[2] DOI: 10.1038/35017500 · doi:10.1038/35017500
[3] DOI: 10.1016/S0951-8320(00)00109-5 · doi:10.1016/S0951-8320(00)00109-5
[4] DOI: 10.1115/1.2919480 · doi:10.1115/1.2919480
[5] DOI: 10.1145/358923.358929 · doi:10.1145/358923.358929
[6] DOI: 10.1016/S0045-7949(99)00110-8 · doi:10.1016/S0045-7949(99)00110-8
[7] DOI: 10.1007/BF01197559 · doi:10.1007/BF01197559
[8] DOI: 10.1109/4235.585892 · Zbl 05451865 · doi:10.1109/4235.585892
[9] DOI: 10.1162/106454699568728 · doi:10.1162/106454699568728
[10] Ebrahimi Farsangi, H. and Salajeghe, E.A. (2000), ”Topological optimization of double layer grids using genetic algorithms”, Proceedings of the Fifth International Conference on Civil Engineering, Mashhad, Iran, pp. 45-54.
[11] DOI: 10.1287/ijoc.12.3.237.12636 · Zbl 1040.90570 · doi:10.1287/ijoc.12.3.237.12636
[12] DOI: 10.1007/BF01197555 · doi:10.1007/BF01197555
[13] DOI: 10.1002/nme.800 · Zbl 1032.74623 · doi:10.1002/nme.800
[14] Kaveh, A. and Shahrouzi, M. (2005), ”Direct index coding for discrete size optimization of structures by genetic algorithms”, IUST International Journal of Civil Engineering, Vol. 3 Nos 3/4, pp. 166-81.
[15] DOI: 10.1108/02644400610680351 · Zbl 1182.74189 · doi:10.1108/02644400610680351
[16] Kharmanda, G., Mohamed, A. and Maurice, L. (2002), ”CAROD: computer-aided reliable and optimal design as a concurrent system for real structures”, International Journal of CAD/CAM, Vol. 2 No. 1, pp. 1-12.
[17] DOI: 10.1016/S0045-7949(99)00055-3 · doi:10.1016/S0045-7949(99)00055-3
[18] DOI: 10.1016/0045-7949(94)00617-C · Zbl 0900.73501 · doi:10.1016/0045-7949(94)00617-C
[19] DOI: 10.1007/BF01743536 · doi:10.1007/BF01743536
[20] DOI: 10.1061/(ASCE)0733-9445(1992)118:5(1233) · doi:10.1061/(ASCE)0733-9445(1992)118:5(1233)
[21] DOI: 10.2514/3.8834 · Zbl 0582.73080 · doi:10.2514/3.8834
[22] DOI: 10.1016/0045-7949(87)90223-9 · Zbl 0597.73093 · doi:10.1016/0045-7949(87)90223-9
[23] DOI: 10.1016/0045-7949(94)00426-4 · Zbl 0900.73497 · doi:10.1016/0045-7949(94)00426-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.