×

A method for estimating the statistical error of the solution in the inverse spectroscopy problem. (Russian. English summary) Zbl 1483.62206

Summary: A method for obtaining the interval of statistical error of the solution of the inverse spectroscopy problem, for the estimation of the statistical error of experimental data of which the normal distribution law can be applied, has been proposed. With the help of mathematical modeling of the statistical error of partial spectral components obtained from the numerically stable solution of the inverse problem, it has become possible to specify the error of the corresponding solution. The problem of getting the inverse solution error interval is actual because the existing methods of solution error evaluation are based on the analysis of smooth functional dependences under rigid restrictions on the region of acceptable solutions (compactness, monotonicity, etc.). Their use in computer processing of real experimental data is extremely difficult and therefore, as a rule, is not applied. Based on the extraction of partial spectral components and the estimation of their error, a method for obtaining an interval of statistical error for the solution of inverse spectroscopy problems has been proposed in this work. The necessity and importance of finding the solution error interval to provide reliable results is demonstrated using examples of processing Mössbauer spectra.

MSC:

62P35 Applications of statistics to physics
83B05 Observational and experimental questions in relativity and gravitational theory
PDFBibTeX XMLCite
Full Text: DOI MNR

References:

[1] Ogorodnikov I. N., Introduction to inverse problems of physical diagnostics, Ural Federal University, Yekaterinburg, 2017
[2] Babanov Yu. A., Vasin V. V., Ponomarev D. A., Devyaterikov D. I., Romashev L. N., Ustinov V. V., “A subnanometric resolution method for studying local atomic structure of interface and surface of multilayered nanoheterostructure thin films”, Thin Solid Films, 656 (2018), 44-52 · doi:10.1016/j.tsf.2018.04.024
[3] Lee J. W., Prenter P. M., “An analysis of the numerical solution of Fredholm integral equations of the first kind”, Numerische Mathematik, 30:1 (1978), 1-23 · Zbl 0425.65074 · doi:10.1007/BF01403903
[4] Hansen P. C., “The Backus-Gilbert method: SVD analysis and fast implementation”, Inverse Problems, 10:4 (1994), 895-904 · Zbl 0815.65137 · doi:10.1088/0266-5611/10/4/009
[5] Kabanikhin S. I., “Definitions and examples of inverse and ill-posed problems”, Journal of Inverse and Ill-posed Problems, 16:4 (2008), 317-357 · Zbl 1170.35100 · doi:10.1515/JIIP.2008.019
[6] Razavy M., An introduction to inverse problems in physics, World Scientific, Singapore, 2020 · Zbl 1436.81007 · doi:10.1142/11860
[7] Wells J. W., Birkinshaw K., “A matrix approach to resolution enhancement of XPS spectra by a modified maximum entropy method”, Journal of Electron Spectroscopy and Related Phenomena, 152:1-2 (2006), 37-43 · doi:10.1016/j.elspec.2006.03.003
[8] Xu P., “A new look at Akaike”s Bayesian information criterion for inverse ill-posed problems”, Journal of the Franklin Institute, 358:7 (2021), 4077-4102 · Zbl 1480.62015 · doi:10.1016/j.jfranklin.2021.03.003
[9] Zheng S., Ding C., Nie F., Regularized singular value decomposition and application to recommender system, 2018, arXiv:
[10] Xiong X., Xue X., “A fractional Tikhonov regularization method for identifying a space-dependent source in the time-fractional diffusion equation”, Applied Mathematics and Computation, 349 (2019), 292-303 · Zbl 1428.35674 · doi:10.1016/j.amc.2018.12.063
[11] Mohammadian-Behbahani M.-R., Saramad S., “Integral-equation based methods for parameter estimation in output pulses of radiation detectors: Application in nuclear medicine and spectroscopy”, Nuclear Instruments and Methods in Physics Research. Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 887 (2018), 7-12 · doi:10.1016/j.nima.2017.12.073
[12] Vasin V. V., “Irregular nonlinear operator equations: Tikhonov”s regularization and iterative approximation”, Journal of Inverse and Ill-posed Problems, 21:1 (2013), 109-123 · Zbl 1276.65031 · doi:10.1515/jip-2012-0084
[13] Qiao B., Liu J., Liu J., Yang Z., Chen X., “An enhanced sparse regularization method for impact force identification”, Mechanical Systems and Signal Processing, 126 (2019), 341-367 · doi:10.1016/j.ymssp.2019.02.039
[14] Leonov A. S., “Which of inverse problems can have a priori approximate solution accuracy estimates comparable in order with the data accuracy”, Numerical Analysis and Applications, 7:4 (2014), 284-292 · Zbl 1340.65116 · doi:10.1134/S199542391404003X
[15] Verlan’ A. F., Sizikov V. S., Integral equations: methods, algorithms, programs, Naukova Dumka, Kiev, 1986 · Zbl 0635.65134
[16] Morozov V. A., “On restoration of noisy signals by a regularization method”, Vychislitel’nye Metody i Programmirovanie, 13:1 (2012), 247-252 (in Russian)
[17] Vasin V. V., Ageev A. L., Ill-posed problems with a priori information, De Gruyter, Berlin, 2013 · Zbl 0840.65048 · doi:10.1515/9783110900118
[18] Yagola A. G., “Ill-posed problems with apriori information”, Sibirskie Èlektronnye Matematicheskie Izvestiya, 7 (2010), 343-361 (in Russian)
[19] Nemtsova O. M., Ageev A. L., Voronina E. V., “The estimation of the error of the hyperfine interaction parameter distribution from M{ö}ssbauer spectra”, Nuclear Instruments and Methods in Physics Research. Section B: Beam Interactions with Materials and Atoms, 187:1 (2002), 132-136 · doi:10.1016/S0168-583X(01)00830-8
[20] Sussman M. S., “Linear signal combination \(T_2\) spectroscopy”, Magnetic Resonance Imaging, 66 (2020), 257-266 · doi:10.1016/j.mri.2019.11.016
[21] Henríquez P. A., Ruz G. A., “Noise reduction for near-infrared spectroscopy data using extreme learning machines”, Engineering Applications of Artificial Intelligence, 79 (2019), 13-22 · doi:10.1016/j.engappai.2018.12.005
[22] Zelada-Ríos L., Pacheco-Barrios K., Galecio-Castillo M., Yamunaqué-Chunga C., Álvarez-Toledo K., Otiniano-Sifuentes R., “Acute disseminated encephalomyelitis and COVID-19: A systematic synthesis of worldwide cases”, Journal of Neuroimmunology, 359 (2021), 577674 · doi:10.1016/j.jneuroim.2021.577674
[23] Miguel R. B., Talebi-Moghaddam S., Zamani M., Turcotte C., Daun K. J., “Assessing flare combustion efficiency using imaging Fourier transform spectroscopy”, Journal of Quantitative Spectroscopy and Radiative Transfer, 273 (2021), 107835 · doi:10.1016/j.jqsrt.2021.107835
[24] Calvetti D., Lewis B., Reichel L., Sgallari F., “Tikhonov regularization with nonnegativity constraint”, Electronic Transactions on Numerical Analysis, 18:1 (2004), 153-173 · Zbl 1069.65047
[25] Lekhtmakher S., Shapiro M., “On the paper “Inverse methods for analyzing aerosol spectrometer measurements: A critical review”, Journal of Aerosol Science, 31:7 (2000), 867-873 · doi:10.1016/S0021-8502(99)00561-3
[26] Samaras S., Nicolae D., B{ö}ckmann Ch., Vasilescu J., Binietoglou I., Labzovskii L., Toanca F., Papayannis A., “Using Raman-lidar-based regularized microphysical retrievals and Aerosol Mass Spectrometer measurements for the characterization of biomass burning aerosols”, Journal of Computational Physics, 299 (2015), 156-174 · Zbl 1351.80010 · doi:10.1016/j.jcp.2015.06.045
[27] Chuev M. A., “An effective method for analyzing the hyperfine structure of gamma resonance spectra using the Voith profile”, Doklady Akademii Nauk, 438:6 (2011), 747-751 (in Russian)
[28] Pearson K., “On the criterion that a given system of deviations from the probable in the case of a correlated system of variables in such that it can be reasonably supposed to have arisen from random sampling”, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. Series 5, 50:302 (1900), 157-175 · JFM 31.0238.04 · doi:10.1080/14786440009463897
[29] Taylor J. R., An introduction to error analysis: The study of uncertainties in physical measurements, University Science Books, 1982 · Zbl 0494.62002
[30] Prakash J., Sanny D., Kalva S. K., Pramanik M., Yalavarthy P. K., “Fractional regularization to improve photoacoustic tomographic image reconstruction”, IEEE Transactions on Medical Imaging, 38:8 (2019), 1935-1947 · doi:10.1109/TMI.2018.2889314
[31] Reddy G. D., “A class of parameter choice rules for stationary iterated weighted Tikhonov regularization scheme”, Applied Mathematics and Computation, 347 (2019), 464-476 · Zbl 1429.65119 · doi:10.1016/j.amc.2018.11.015
[32] Mohammady S., Eslahchi M. R., “Extension of Tikhonov regularization method using linear fractional programming”, Journal of Computational and Applied Mathematics, 371 (2020), 112677 · Zbl 1441.47009 · doi:10.1016/j.cam.2019.112677
[33] Gao Y., Xiao L., Wu B., “TSVD and Tikhonov methods and influence factor analysis for NMR data in shale rock”, Journal of Petroleum Science and Engineering, 194 (2020), 107508 · doi:10.1016/j.petrol.2020.107508
[34] Kim I. G., Latypova N. V., Motorina O. L., Numerical methods, study guide, v. 2, Udmurt State University, Izhevsk, 2013
[35] Nemtsova O. M., Konygin G. N., “Improvement of the Tikhonov regularization method for solving the inverse problem of M{ö}ssbauer spectroscopy”, Journal of Applied Spectroscopy, 85:5 (2018), 931-935 · doi:10.1007/s10812-018-0741-2
[36] Nemtsova O. M., Konygin G. N., Porsev V. E., “Separation of overlapping spectral lines using the Tikhonov regularization method”, Journal of Applied Spectroscopy, 88:2 (2021), 373-381 · doi:10.1007/s10812-021-01185-5
[37] Konygin G. N., Nemtsova O. M., Porsev V. E., “M{ö}ssbauer spectra of solid solutions processed using the Voigt function”, Journal of Applied Spectroscopy, 86:3 (2019), 409-415 · doi:10.1007/s10812-019-00834-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.