×

Separability of the kernel function in an integral formulation for the anisotropic radiative transfer equation. (English) Zbl 1475.45002

Summary: We study an integral formulation for the radiative transfer equation in anisotropic media with truncated approximation to the scattering phase function. The integral formulation consists of a coupled system of integral equations for the angular moments of the transport solution. We analyze the approximate separability of the kernel functions in these integral formulations, deriving asymptotic lower and upper bounds on the number of terms needed in a separable approximation of the kernel functions as the moment grows. Our analysis provides a mathematical understanding of when low-rank approximations to the discretized integral kernels can be used to develop fast numerical algorithms for the corresponding system of integral equations.

MSC:

45B05 Fredholm integral equations
85A25 Radiative transfer in astronomy and astrophysics
33C55 Spherical harmonics
35Q79 PDEs in connection with classical thermodynamics and heat transfer
65R20 Numerical methods for integral equations
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] V. Agoshkov, Boundary Value Problems for Transport Equations, Springer, New York, 2012. · Zbl 0914.35001
[2] S. R. Arridge, Optical tomography in medical imaging, Inverse Problems, 15 (1999), pp. R41-R93. · Zbl 0926.35155
[3] G. Bal, Inverse transport theory and applications, Inverse Problems, 25 (2009), 053001. · Zbl 1178.35377
[4] G. Bal, L. Carin, D. Liu, and K. Ren, Experimental validation of a transport-based imaging method in highly scattering environments, Inverse Problems, 23 (2007), pp. 2527-2539. · Zbl 1126.35088
[5] G. Bal and K. Ren, Transport-based imaging in random media, SIAM J. Appl. Math., 68 (2008), pp. 1738-1762. · Zbl 1156.35482
[6] M. Bebendorf, Efficient inversion of the galerkin matrix of general second-order elliptic operators with nonsmooth coefficients, Math. Comp., 74 (2005), pp. 1179-1199. · Zbl 1330.65173
[7] M. Bebendorf and W. Hackbusch, Existence of \(\mathcal{H} \)-matrix approximants to the inverse fe-matrix of elliptic operator with \(l^{\infty} \)-coefficients, Numer. Math., 95 (2003), pp. 1-28. · Zbl 1033.65100
[8] L. Borcea and J. Garnier, Derivation of a one-way radiative transfer equation in random media, Phys. Rev. E, 93 (2016), 022115.
[9] S. Börm, Approximation of solution operators of elliptic partial differential equations by \(\mathcal{H} \)- and \(\mathcal{H}^2\)- matrices, Numer. Math., 115 (2010), pp. 165-193. · Zbl 1191.65148
[10] J. Bryson, H. Zhao, and Y. Zhong, Intrinsic complexity and scaling laws: From random fields to random vectors, Multiscale Model. Simul., 17 (2019), pp. 460-481. · Zbl 1428.62206
[11] F. W. Byron and R. W. Fuller, Mathematics of Classical and Quantum Physics, Courier Corporation, North Chelmsford, MA, 2012. · Zbl 1141.00001
[12] E. Candes, L. Demanet, and L. Ying, A fast butterfly algorithm for the computation of Fourier integral operators, Multiscale Model. Simul., 7 (2009), pp. 1727-1750. · Zbl 1184.65125
[13] C. Cecchi-Pestellini, L. Barletti, A. Belleni-Morante, and S. Aiello, Radiative transfer in the stochastic interstellar medium, Trans. Theor. Stat. Phys., 28 (1999), pp. 199-228. · Zbl 0945.65151
[14] S. Chandrasekhar, Radiative Transfer, Dover, New York, 1960.
[15] R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, Vol. VI, Springer-Verlag, Berlin, 1993.
[16] P. J. Davis, Interpolation and Approximation, Courier Corporation, North Chelmsford, MA, 1975. · Zbl 0329.41010
[17] J. D. Densmore, K. G. Thompson, and T. J. Urbatsch, A hybrid transport-diffusion Monte Carlo method for frequency-dependent radiative-transfer simulations, J. Comput. Phys., 231 (2012), pp. 6924-6934. · Zbl 1284.65005
[18] T. Ding and K. Ren, Inverse transport calculations in optical imaging with subspace optimization algorithms, J. Comput. Phys., 273 (2014), pp. 212-226. · Zbl 1351.78022
[19] B. Engquist and H. Zhao, Approximate separability of the Green’s function of the Helmholtz equation in the high frequency limit, Comm. Pure Appl. Math., 71 (2018), pp. 2220-2274. · Zbl 1405.35022
[20] Y. Fan, J. An, and L. Ying, Fast algorithms for integral formulations of steady-state radiative transfer equation, J. Comput. Phys., 380 (2019), pp. 191-211. · Zbl 1451.65234
[21] F. Filbet, C. Mouhot, and L. Pareschi, Solving the Boltzmann equation in \({N\log_2 N}\), SIAM J. Sci. Comput., 28 (2006), pp. 1029-1053. · Zbl 1174.82012
[22] I. M. Gamba, J. R. Haack, C. D. Hauck, and J. Hu, A fast spectral method for the Boltzmann collision operator with general collision kernels, SIAM J. Sci. Comput., 39 (2017), pp. B658-B674. · Zbl 1394.35310
[23] H. Gao and H. Zhao, A fast forward solver of radiative transfer equation, Trans. Theor. Stat. Phys., 38 (2009), pp. 149-192. · Zbl 1187.78028
[24] H. Gao and H. Zhao, Multilevel bioluminescence tomography based on radiative transfer equation part 1: l1 regularization, Optics Express, 18 (2010), pp. 1854-1871.
[25] F. Gölgeleyen and M. Yamamoto, Stability for some inverse problems for transport equations, SIAM J. Math. Anal., 48 (2016), pp. 2319-2344. · Zbl 1342.35451
[26] L. Greengard, The Rapid Evaluation of Potential Fields in Particle Systems, MIT Press, Cambridge, MA, 1988. · Zbl 1001.31500
[27] L. Greengard and V. Rokhlin, A fast algorithm for particle simulations, J. Comput. Phys., 73 (1987), pp. 325-348. · Zbl 0629.65005
[28] W. Hackbusch, A sparse matrix arithmetic based on \(\mathcal{H} \)-matrices. I. introduction to \(\mathcal{H} \)-matrices, Computing, 62 (1999), pp. 89-108. · Zbl 0927.65063
[29] W. Hackbusch, Elliptic Differential Equations: Theory and Numerical Treatment, Springer, New York, 2017. · Zbl 1379.35001
[30] L. G. Henyey and J. L. Greenstein, Diffuse radiation in the galaxy, Astrophys. J., 93 (1941), pp. 70-83. · JFM 67.1128.08
[31] K. Ho and L. Ying, Hierarchical interpolative factorization for elliptic operators: Differential equations, Comm. Pure Appl. Math., 69 (2016), pp. 1415-1451. · Zbl 1353.35142
[32] L. Hörmander, The Analysis of Linear Partial Differential Operators I: Distribution Theory and Fourier Analysis, Springer, New York, 2015. · Zbl 1028.35001
[33] A. D. Kim and M. Moscoso, Radiative transport theory for optical molecular imaging, Inverse Problems, 22 (2006), pp. 23-42. · Zbl 1089.35089
[34] A. Kolmogorov, Über die beste annäherung von funkionen einer funktionklasse, Ann. of Math., 37 (1936), pp. 107-111. · JFM 62.0283.02
[35] R.-Y. Lai, Q. Li, and G. Uhlmann, Inverse Problems for the Stationary Transport Equation in the Diffusion Scaling, arXiv:1808.02071, 2018.
[36] E. W. Larsen, Neutronics methods for thermal radiative transfer, Nuclear Science Engineering, 100 (1988), pp. 255-259.
[37] E. E. Lewis and W. F. Miller, Computational Methods of Neutron Transport, American Nuclear Society, La Grange Park, IL, 1993. · Zbl 0594.65096
[38] Q. Li and W. Sun, Applications of Kinetic Tools to Inverse Transport Problems, arXiv:1908.00094, 2019.
[39] S. Luo, J. Qian, and R. Burridge, Fast Huygens sweeping methods for Helmholtz equations in inhomogeneous media in the high frequency regime, J. Comput. Phys., 270 (2014), pp. 378-401. · Zbl 1349.78051
[40] A. V. Mamonov and K. Ren, Quantitative photoacoustic imaging in radiative transport regime, Comm. Math. Sci., 12 (2014), pp. 201-234. · Zbl 1294.35198
[41] E. Michielssen and A. Boag, A multilevel matrix decomposition algorithm for analyzing scattering from large structures, IEEE Trans. Antennas Propagation, 44 (1996), pp. 1086-1093.
[42] M. Mokhtar-Kharroubi, Mathematical Topics in Neutron Transport Theory: New Aspects, Ser. Adv. Math. Appl. Sci. 46, World Scientific, River Edge, NJ, 1997. · Zbl 0997.82047
[43] C. Mouhot and L. Pareschi, Fast algorithm for comupting the Boltzmann collision operator, Math. Comput., 75 (2006), pp. 1833-1852. · Zbl 1105.76043
[44] E. D. Rainville, Special Functions, Chelsea, London, 1960. · Zbl 0092.06503
[45] K. Ren, Recent developments in numerical techniques for transport-based medical imaging methods, Commun. Comput. Phys., 8 (2010), pp. 1-50. · Zbl 1364.94100
[46] K. Ren, G. Bal, and A. H. Hielscher, Frequency domain optical tomography based on the equation of radiative transfer, SIAM J. Sci. Comput., 28 (2006), pp. 1463-1489. · Zbl 1200.65089
[47] K. Ren, R. Zhang, and Y. Zhong, A fast algorithm for radiative transport in isotropic media, J. Comput. Phys., 399 (2019), 108958. · Zbl 1453.65362
[48] T. Saratoon, T. Tarvainen, B. T. Cox, and S. R. Arridge, A gradient-based method for quantitative photoacoustic tomography using the radiative transfer equation, Inverse Problems, 29 (2013), 075006. · Zbl 1295.92019
[49] L. Schläfli, Über die zwei Heineschen Kugelfunktionen mit beliebigem Parameter und ihre ausnahmslose Darstellung durch bestimmte Integrale, Springer-Verlag, Berlin, 1956.
[50] R. J. D. Spurr, T. P. Kurosu, and K. V. Chance, A linearized discrete ordinate radiative transfer model for atmospheric remote-sensing retrieval, J. Quant. Spectrosc. Radiat. Transfer, 68 (2001), pp. 689-735.
[51] G. Szegö, Orthogonal Polynomials, AMS, Providence, RI, 1939. · Zbl 0023.21505
[52] A. Tamasan, An inverse boundary value problem in two-dimensional transport, Inverse Problems, 18 (2002), pp. 209-219. · Zbl 0995.65146
[53] R. Turpault, M. Frank, B. Dubroca, and A. Klar, Multigroup half space moment approximations to the radiative heat transfer equations, J. Comput. Phys., 198 (2004), pp. 363-371. · Zbl 1053.65101
[54] J.-N. Wang, Stability estimates of an inverse problem for the stationary transport equation, Ann. Inst. Henri Poincaré, 70 (1999), pp. 473-495. · Zbl 0963.35204
[55] E. Wigner, Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra, Academic Press, New York, 1959. · Zbl 0085.37905
[56] W. Wiscombe, The delta-m method: Rapid yet accurate radiative flux calculations for strongly asymmetric phase functions, J. Atmos. Sci., 34 (1977), pp. 1408-1422.
[57] R. Wong, Asymptotic Approximations of Integrals, SIAM, Philadelphia, 2001. · Zbl 1078.41001
[58] H. Zhao and Y. Zhong, Instability of an inverse problem for the stationary radiative transport near the diffusion limit, SIAM J. Math. Anal., 51 (2019), pp. 3750-3768. · Zbl 1431.65162
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.