## Mode transformation for a Schrödinger type equation: avoided and unavoidable level crossings.(English)Zbl 1461.81031

In quantum mechanics, the dynamics of a system is described by the Schrödinger equation $-i \hbar \partial_t \Psi(t) = \mathcal{H}(t) \Psi(t),$ with $$\mathcal{H}(t)$$ being the self-adjoint Hamiltonian operator with instantaneous eigenvalues $$\varepsilon_n(t)$$ and corresponding eigenvectors $$\varphi_n(t)$$. For a time-independent Hamiltonian, if the system starts in an eigenstate $$\varphi_n$$ at $$t=0$$, then its time-evolution is simply $$\Psi_n(t) = e^{i\varepsilon_n t/\hbar} \varphi_n$$, i.e., a system initialized in an eigenstate stays in the same state. The adiabatic theorem tells us that a similar statement holds for time-dependent Hamiltonians under certain conditions: if the system is initialized in an instantaneous eigenstate $$\varphi_n(t)$$ at $$t=0$$, then its time-evolution is given by $$\Psi_n(t) = \text{exp}\left\{ \frac{i}{\hbar} \int_0^t \varepsilon_n(t') dt'\right\} \varphi_n(t)$$, provided that $$\varepsilon_n(t)$$ stays away from all other eigenvalues. If this condition is violated at some time $$t = t_0$$, i.e., if $$\left\lvert \varepsilon_n(t_0) - \varepsilon_m(t_0) \right\rvert$$ is “small” for some $$\varepsilon_m(t)$$, then the system can transition to $$\varphi_m(t)$$ with a finite probability. One is then interested in the transition matrix $$\mathcal{T}$$ that connects the adiabatic modes at different sides of $$t=t_0$$, which is given by the Landau-Zener formula.
In the present article, the authors extend the Landau-Zener formula to a more general class of systems, whose dynamics is given by $-i \hbar \, \Gamma \partial_t \Psi(t) = \widehat{\mathcal{K}}(t) \Psi(t),$ with self-adjoint $$\widehat{\mathcal{K}}(t)$$ and $$\Gamma$$. This can also be thought of as the Schrödinger equation with Hamiltonian $$\mathcal{H}(t) = \Gamma^{-1} \widehat{\mathcal{K}}(t)$$, which, in general, is not self-adjoint. In quantum mechanics, such “Hamiltonians” are used to describe open systems. They are also useful in other problems of physical interest, where $$t$$ is a spatial coordinate. Examples of such systems include the scattering problem for a Dirac electron (wherein the Hamiltonian has first order spatial derivatives) and wave propagation through a slowly irregular waveguide.
For the computation of the transition matrices, the authors consider systems where $$\widehat{\mathcal{K}}(t) = \mathcal{K}(t) + \sqrt\hbar \mathcal{B}(t)$$, such that the generalized eigenvalues satisfying $$\mathcal{K}(t) \varphi_n(t) = \varepsilon_n(t) \Gamma \varphi_n(t)$$ exhibit a twofold degeneracy at $$t=0$$ such that $$\varepsilon_2(t) - \varepsilon_1(t) \sim 2Qt$$ for some $$Q>0$$ as $$t\to0$$. The small perturbation $$\sqrt\hbar \mathcal{B}(t)$$ then lifts this degeneracy, yielding the Landau-Zener setup. The transition matrix for such systems – with certain constraints on the analyticity and boundedness of various operators – is computed explicitly. This involves construction of separate asymptotic solutions inside and outside neighborhood of $$t=0$$, whose matching then yields the transition matrix.
Away from $$t = 0$$, the adiabatic theorem holds and an asymptotic solution was constructed by substituting the ansatz $$\Psi(t) = \Phi(t) \exp\left\{ \frac{i}\hbar \int^t \vartheta(t') dt' \right\}$$, expanding both $$\Phi(t)$$ and $$\vartheta(t)$$ in powers of $$\sqrt{\hbar}$$ and solving the Schrödinger equation order by order. On the other hand, in a small neighborhood of $$t=0$$, an asymptotic solution was constructed by first expanding the operators in a Taylor series in $$t$$ and switching to the slow variable $$\tau \equiv t/\sqrt\hbar$$. This renders the Schrödinger equation in a form where an asymptotic solution $$\Psi(t)$$ can again be obtained by expanding its magnitude and phase separately as a power series in $$\sqrt\hbar$$. The transition matrix was then obtained by matching the asymptotics of the two solutions obtained above, the former in the limit of $$t\to0$$ and the latter in the limit of $$\tau\to\infty$$.

### MSC:

 81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics 81Q15 Perturbation theories for operators and differential equations in quantum theory 81Q37 Quantum dots, waveguides, ratchets, etc. 35C20 Asymptotic expansions of solutions to PDEs 34E20 Singular perturbations, turning point theory, WKB methods for ordinary differential equations

### Keywords:

Landau-Zener problem; Klein tunneling; WKB expansion
Full Text:

### References:

 [1] Born, M.; Fock, V., Beweis des adiabatensatzes, Z. Phys., 51, 3-4, 165-180 (1928) · JFM 54.0994.03 [2] Teufel, S., Adiabatic Perturbation Theory in Quantum Dynamics (2003), Springer Science & Business Media · Zbl 1053.81003 [3] Hagedorn, G. A.; Joye, A.; Gesztesy, F.; Deift, P.; Galvez, C.; Perry, P.; Schlag, W., Mathematical analysis of Born-Oppenheimer approximations, 203-226 (2007), American Mathematical Society, Rhode Island · Zbl 1129.81095 [4] Landau, L. D., Collected Papers of LD Landau (1965), International Publishing Distributor, Inc. [5] Zener, C., Non-adiabatic crossing of energy levels, Proc. R. Soc. London, Ser. A, 137, 833, 696-702 (1932) · Zbl 0005.18605 [6] Stueckelberg, E. C. G., Theory of inelastic collisions between atoms (theory of inelastic collisions between atoms, using two simultaneous differential equations), Helv. Phys. Acta (Basel), 5, 369-422 (1932) [7] Abramowitz, M.; Stegun, I. A., Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables (1964), Courier Corporation [8] Hagedorn, G. A., Proof of the Landau-Zener formula in an adiabatic limit with small eigenvalue gaps, Commun. Math. Phys., 136, 3, 433-449 (1991) · Zbl 0723.35068 [9] Joye, A., Proof of the Landau-Zener formula, Asymptotic Anal., 9, 3, 209-258 (1994) · Zbl 0814.35109 [10] Babich, V. M.; Buldyrev, V. S., Short-Wavelength Diffraction Theory: Asymptotic Methods (1991), Springer-Verlag · Zbl 0742.35002 [11] Maslov, V. P.; Fedoriuk, M. V., Semi-Classical Approximation in Quantum Mechanics (2001), Springer Science & Business Media [12] Felsen, L. B.; Marcuvitz, N., Radiation and Scattering of Waves (1994), John Wiley & Sons · Zbl 0050.41802 [13] Perel’, M. V., Overexcitation of modes in an anisotropic earth-ionosphere waveguide on transequatorial paths in the presence of two close degeneracy points, Radiophys. Quantum Electron., 33, 11, 882-889 (1990) [14] Perel, M. V., Reexcitation of modes in an anisotropic earth-ionosphere waveguide along transequatorial paths, provided 2 close points of degeneracy, Izv. Vyssh. Uchebn. Zaved., Radiofiz. [Sov. Radiophys.], 33, 11, 1208-1216 (1990) [15] Andronov, I. V.; Zaika, D. Yu.; Perel, M. V., An effect of excitation of a transverse magnetic creeping wave when a transverse electric wave crosses the line of the coincidence of propagation constants, J. Commun. Technol. Electron., 56, 7, 798-804 (2011) [16] Perel’, M. V.; Fialkovskii, I. V.; Kiselev, A. P., Resonance interaction of bending and shear modes in a nonuniform Timoshenko beam, Zap. Nauchn. Semin. POMI, 264, 258-284 (2000) [17] Perel, M. V.; Kaplunov, J. D.; Rogerson, G. A., An asymptotic theory for internal reflection in weakly inhomogeneous elastic waveguides, Wave Motion, 41, 2, 95-108 (2005) · Zbl 1189.74067 [18] Aksenova, E. V.; Romanov, V. P.; Valkov, A. Yu., Calculation of correlation function of the director fluctuations in cholesteric liquid crystals by WKB method, J. Math. Phys., 45, 6, 2420-2446 (2004) · Zbl 1071.82055 [19] Bender, C. M., Making sense of non-Hermitian Hamiltonians, Rep. Prog. Phys., 70, 6, 947 (2007) [20] Olver, F. W. J., Asymptotics and Special Functions (2014), Academic Press · Zbl 0303.41035 [21] Wasow, W., Linear Turning Point Theory (2012), Springer Science & Business Media · Zbl 0142.34403 [22] Buslaev, V.; Grigis, A., Turning points for adiabatically perturbed periodic equations, J. Anal. Math., 84, 1, 67-143 (2001) · Zbl 0987.35013 [23] Grinina, E. A., Solution of the operator equation i ∈ dy/dt = A(t)y on intervals containing turning points, Theor. Math. Phys., 122, 3, 298-311 (2000) · Zbl 0964.34039 [24] Nenciu, G.; Rasche, G., On the adiabatic theorem for nonself-adjoint Hamiltonians, J. Phys. A: Math. Gen., 25, 21, 5741 (1992) [25] Katsnelson, M. I., Graphene: Carbon in two dimensions, Mater. Today, 10, 1, 20-27 (2007) [26] Klein, O., Die reflexion von elektronen an einem potentialsprung nach der relativistischen dynamik von dirac, Z. Phys., 53, 3-4, 157-165 (1929) · JFM 55.0527.04 [27] Katsnelson, M. I.; Novoselov, K. S.; Geim, A. K., Chiral tunnelling and the Klein paradox in graphene, Nat. Phys., 2, 9, 620-625 (2006) [28] Reijnders, K. J. A.; Tudorovskiy, T.; Katsnelson, M. I., Semiclassical theory of potential scattering for massless Dirac fermions, Ann. Phys., 333, 155-197 (2013) [29] Zalipaev, V.; Linton, C. M.; Croitoru, M. D.; Vagov, A., Resonant tunneling and localized states in a graphene monolayer with a mass gap, Phys. Rev. B, 91, 085405 (2015) [30] Bogolyubov, N. N.; Shirkov, D. V.; Chomet, S., Introduction to the Theory of Quantized Fields (1976), Wiley: Wiley, New York [31] Kato, T., Perturbation Theory for Linear Operators (2013), Springer Science & Business Media [32] Buldyrev, V. S.; Slavjanov, S. Yu., Uniform asymptotic expansions for solutions of an equation of Schrödinger type with two transition points. 1, Vestnik Leningrad. Univ, 23, 70-84 (1968) [33] Cherry, T. M., Uniform asymptotic formulae for functions with transition points, Trans. Am. Math. Soc., 68, 2, 224-257 (1950) · Zbl 0036.06102 [34] Langer, R. E., On the connection formulas and the solutions of the wave equation, Phys. Rev., 51, 8, 669 (1937) · Zbl 0017.01705 [35] Kucherenko, V. V., Asymptotics of the solution of the system $$a(x, - i h \frac{\partial}{\partial x})$$ as h → 0 in the case of characteristics of variable multiplicity, Izv. Ross. Akad. Nauk, Ser. Mat., 38, 3, 625-662 (1974) [36] Belov, V. V.; Dobrokhotov, S. Yu.; Tudorovskiy, T. Ya., Operator separation of variables for adiabatic problems in quantum and wave mechanics, J. Eng. Math., 55, 1-4, 183-237 (2006) · Zbl 1110.81080 [37] de Verdier, Y. C.; Lombardi, M.; Pollet, J., The microlocal Landau-Zener formula, Annales de l’IHP Physique théorique, Sec. A, 71, 1, 95-127 (1999) · Zbl 0986.81027 [38] Bender, C. M.; Orszag, S. A., Advanced Mathematical Methods for Scientists and Engineers I (1999), Springer Science & Business Media · Zbl 0938.34001 [39] Babich, V. M.; Kirpicnikova, N. Ya., The Boundary-Layer Method in Diffraction Problems (1979), Springer: Springer, Berlin [40] Bobashov, S. V.; Kharchenko, V. A. (1974) [41] Bobashev, S. V.; Kharchenko, V. A., Coherent population of quasimolecular states by atomic scattering, Sov. Phys. JETP, 44, 4, 693-698 (1976) [42] Berry, M. V., Quantal phase factors accompanying adiabatic changes, Proc. R. Soc. London, Ser. A, 392, 45-57 (1984) · Zbl 1113.81306 [43] Whittaker, E. T.; Watson, G. N., A Course in Modern Analysis, 347-348 (1990), Cambridge University Press: Cambridge University Press, Cambridge, England [44] Perel, M. V.; Sidorenko, M. S., Two-scale approach to an asymptotic solution of Maxwell equations in layered periodic media (2015) [45] Berry, M. V., Physics of nonhermitian degeneracies, Czech. J. Phys., 54, 10, 1039-1047 (2004) [46] Heiss, W. D., The physics of exceptional points, J. Phys. A: Math. Theor., 45, 44, 444016 (2012) · Zbl 1263.81163 [47] Andrianov, A. A.; Cannata, F.; Sokolov, A. V., Non-linear supersymmetry for non-Hermitian, non-diagonalizable Hamiltonians: I. General properties, Nucl. Phys. B, 773, 3, 107-136 (2007) · Zbl 1117.81070 [48] Reyes, S. A.; Olivares, F. A.; Morales-Molina, L., Landau-Zener-Stuckelberg interferometry in-symmetric optical waveguides, J. Phys. A: Math. Theor., 45, 44, 444027 (2012) · Zbl 1275.78006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.