×

The direct and inverse scattering problem for the semilinear Schrödinger equation. (English) Zbl 1442.35544

Summary: We study the direct and inverse scattering problem for the semilinear Schrödinger equation \(\Delta u+a(x,u)+k^2u=0\) in \(\mathbb{R}^d\). We show well-posedness in the direct problem for small solutions based on the Banach fixed point theorem, and the solution has the certain asymptotic behavior at infinity. We also show the inverse problem that the semilinear function \(a(x, z)\) is uniquely determined from the scattering amplitude. The idea is the linearization that by using sources with several parameters we differentiate the nonlinear equation with respect to these parameter in order to get the linear one.

MSC:

35R30 Inverse problems for PDEs
35J61 Semilinear elliptic equations
35J91 Semilinear elliptic equations with Laplacian, bi-Laplacian or poly-Laplacian
35P25 Scattering theory for PDEs
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Aktosun, T.; Papanicolau, VG; Zisis, V., Inverse scattering on the line for a generalized nonlinear Schrödinger equation, Inverse Probl., 20, 1267-1280 (2004) · Zbl 1063.34006 · doi:10.1088/0266-5611/20/4/015
[2] Bukhgeim, A., Recovering a potential from Cauchy data in the two-dimensional case, J. Inverse Ill Posed Probl., 16, 19-33 (2008) · Zbl 1142.30018 · doi:10.1515/jiip.2008.002
[3] Colton, D.; Kress, R., Inverse Acoustic and Electromagnetic Scattering Theory, Third Edition. Applied Mathematical Sciences (2013), New York: Springer, New York · Zbl 1266.35121
[4] Eskin, G., Lectures on Linear Partial Differential Equations (2011), New York: American Mathematical Society, New York · Zbl 1228.35001
[5] Feizmohammadi, A., Oksanen, L.: An inverse problem for a semi-linear elliptic equation in Riemannian geometries. Preprint (2019). arXiv:1904.00608 · Zbl 1448.58016
[6] Ghosh Roy, D.; Couchman, L., Inverse Problems and Inverse Scattering of Plane Waves (2002), New York: Academic Press, New York
[7] Harju, M.; Serov, V., Three-dimensional direct and inverse scattering for the Schrödinger equation with a general nonlinearity, Oper. Theory Adv. Appl., 236, 257-273 (2014) · Zbl 1319.35298 · doi:10.1007/978-3-0348-0648-0_16
[8] Isakov, V.; Nachman, AI, Global uniqueness for a two-dimensional semilinear elliptic inverse problem, Trans. Am. Math. Soc., 347, 3375-3390 (1995) · Zbl 0849.35148 · doi:10.1090/S0002-9947-1995-1311909-1
[9] Jalade, E.: Inverse problem for a nonlinear Helmholtz equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 21, 517-531 (2004) · Zbl 1062.35173
[10] Lassas, M., Liimatainen, T., Lin, Y.-H., Salo, M.: Inverse problems for elliptic equations with power type nonlinearities. Preprint (2019). arXiv:1903.12562 · Zbl 1460.35395
[11] Lassas, M., Liimatainen, T., Lin, Y.-H., Salo, M.: Partial data inverse problems and simultaneous recovery of boundary and coefficients for semilinear elliptic equations. Preprint (2019). arXiv:1905.02764 · Zbl 1473.35653
[12] Nachman, AI, Reconstructions from boundary measurements, Ann. Math., 128, 531-576 (1988) · Zbl 0675.35084 · doi:10.2307/1971435
[13] Novikov, RG, Multidimensional inverse spectral problems for the equation \(-\Delta \psi +(v(x)-Eu(x))\psi = 0\), Funct. Anal. Appl., 22, 263-272 (1989) · Zbl 0689.35098 · doi:10.1007/BF01077418
[14] Päivärinta, L.; Salo, M.; Uhlmann, G., Inverse scattering for the magnetic Schrödinger operator, J. Funct. Anal., 259, 1771-1798 (2010) · Zbl 1254.81092 · doi:10.1016/j.jfa.2010.06.002
[15] Ramm, AG, Recovery of the potential from fixed-energy scattering data, Inverse Probl., 4, 877-886 (1988) · Zbl 0632.35075 · doi:10.1088/0266-5611/4/3/020
[16] Serov, V., Inverse fixed energy scattering problem for the generalized nonlinear Schrödinger operator, Inverse Probl., 28, 025002 (2012) · Zbl 1234.35254 · doi:10.1088/0266-5611/28/2/025002
[17] Serov, V.; Harju, M.; Fotopoulosc, G., Direct and inverse scattering for nonlinear Schrödinger equation in 2D, J. Math. Phys., 53, 123522 (2012) · Zbl 1331.35145 · doi:10.1063/1.4769825
[18] Serov, V.; Harju, M., A uniqueness theorem and reconstruction of singularities for a two-dimensional nonlinear Schrödinger equation, Nonlinearity, 21, 1323-1337 (2008) · Zbl 1155.35494 · doi:10.1088/0951-7715/21/6/010
[19] Sylvester, J.; Uhlmann, G., A global uniqueness theorem for an inverse boundary value problem, Ann. Math., 125, 153-169 (1987) · Zbl 0625.35078 · doi:10.2307/1971291
[20] Uhlmann, G., Electrical impedance tomography and Calderon’s problem, Inverse Probl., 25, 123011 (2009) · Zbl 1181.35339 · doi:10.1088/0266-5611/25/12/123011
[21] Watanabe, M., Time-dependent method for non-linear Schrödinger equations in inverse scattering problems, J. Math. Anal. Appl., 459, 932-944 (2018) · Zbl 1382.35280 · doi:10.1016/j.jmaa.2017.11.012
[22] Weder, R., Lp-Lp estimates for the Schrödinger equation on the line and inverse scattering for the nonlinear Schrödinger equation with a potential, J. Funct. Anal., 170, 37-68 (2000) · Zbl 0943.34070 · doi:10.1006/jfan.1999.3507
[23] Weder, R., Inverse scattering for the nonlinear Schrödinger equation II. Reconstruction of the potential and the nonlinearity in the multidimensional case, Proc. Am. Math. Soc., 129, 3637-3645 (2001) · Zbl 0986.35125 · doi:10.1090/S0002-9939-01-06016-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.