×

On the rising and sinking of granular bubbles and droplets. (English) Zbl 1506.76184

Summary: Recently, the existence of so-called granular bubbles and droplets has been demonstrated experimentally. Granular bubbles and droplets are clusters of particles that respectively rise and sink if submerged in an aerated and vibrated bed of another granular material of different size and/or density. However, currently, there is no model that explains the coherent motion of these clusters and predicts the transition between a rising and sinking motion. Here, we propose an analytical model predicting accurately the neutral buoyancy limit of a granular bubble/droplet. This model allows the compilation of a regime map identifying five distinct regimes of granular bubble/droplet motion.

MSC:

76T10 Liquid-gas two-phase flows, bubbly flows
76T25 Granular flows
76M99 Basic methods in fluid mechanics
76-05 Experimental work for problems pertaining to fluid mechanics
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Alam, M., Trujillo, L. & Herrmann, H.J.2006Hydrodynamic theory for reverse Brazil nut segregation and the non-monotonic ascension dynamics. J. Stat. Phys.124 (2), 587-623. · Zbl 1135.82324
[2] Batchelor, G.K.2000Flow of Effectively Inviscid Fluid with Vorticity. , pp. 507-593. Cambridge University Press.
[3] Beetstra, R., Van Der Hoef, M.A. & Kuipers, J.A.M.2007Numerical study of segregation using a new drag force correlation for polydisperse systems derived from Lattice-Boltzmann simulations. Chem. Engng Sci.62 (1), 246-255, fluidized bed applications.
[4] Berzi, D. & Fraccarollo, L.2015Turbulence locality and granularlike fluid shear viscosity in collisional suspensions. Phys. Rev. Lett.115, 194501.
[5] Breu, A.P.J., Ensner, H.M., Kruelle, C.A. & Rehberg, I.2003Reversing the Brazil-nut effect: competition between percolation and condensation. Phys. Rev. Lett.90, 014302.
[6] Van Buijtenen, M.S., Van Dijk, W.-J., Deen, N.G., Kuipers, J.A.M., Leadbeater, T. & Parker, D.J.2011Numerical and experimental study on multiple-spout fluidized beds. Chem. Engng. Sci.66 (11), 2368-2376.
[7] Carman, P.C.1937Fluid flow through granular beds. Trans. Inst. Chem. Engrs15, 150-166.
[8] Cundall, P.A. & Strack, O.D.L.1979A discrete numerical model for granular assemblies. Géotechnique29 (1), 47-65.
[9] Davidson, J.F., Harrison, D. & Carvalho, J.R.F.G.D.1977On the liquidlike behavior of fluidized beds. Annu. Rev. Fluid Mech.9 (1), 55-86. · Zbl 0433.76007
[10] Duran, J.2001Rayleigh-Taylor instabilities in thin films of tapped powder. Phys. Rev. Lett.87 (25), 254301.
[11] Ergun, S.1952Fluid flow through packed columns. Chem. Engng Prog.48 (2), 89-94.
[12] Gilbertson, M.A. & Eames, I.2001Segregation patterns in gas-fluidized systems. J. Fluid Mech.433, 347-356. · Zbl 1107.76414
[13] Goldfarb, D.J., Glasser, B.J. & Shinbrot, T.2002Shear instabilities in granular flows. Nature415 (6869), 302-305.
[14] Gupta, R. & Mujumdar, A.S.1980Aerodynamics of a vibrated fluid bed. Can. J. Chem. Engng58 (3), 332-338.
[15] Hadamard, J.S.1911Mouvement permanent lent d’une sphere liquid et visqueuse dans un liquide visqueux. C. R. Hebd. Seances Acad. Sci.152, 1735-1738. · JFM 42.0813.01
[16] Hill, M.J.M. & Henrici, O.M.F.E.1894VI. On a spherical vortex. Phil. Trans. R. Soc. Lond. A185, 213-245. · JFM 25.1471.01
[17] Hong, D.C., Quinn, P.V. & Luding, S.2001Reverse Brazil nut problem: competition between percolation and condensation. Phys. Rev. Lett.86 (15), 3423-3426.
[18] Huerta, D.A. & Ruiz-Suárez, J.C.2004Vibration-induced granular segregation: a phenomenon driven by three mechanisms. Phys. Rev. Lett.92 (11), 114301.
[19] Jenkins, J.T. & Yoon, D.K.2002Segregation in binary mixtures under gravity. Phys. Rev. Lett.88, 194301.
[20] Kloss, C., Goniva, C., Hager, A., Amberger, S. & Pirker, S.2012Models, algorithms and validation for opensource dem and CFD-DEM. Prog. Comput. Fluid Dyn.12 (2-3), 140-152.
[21] Knight, J.B., Jaeger, H.M. & Nagel, S.R.1993Vibration-induced size separation in granular media: the convection connection. Phys. Rev. Lett.70 (24), 3728-3731.
[22] Koch, D.L. & Hill, R.J.2001Inertial effects in suspension and porous-media flows. Annu. Rev. Fluid Mech.33, 619-647. · Zbl 0988.76094
[23] Kozeny, J.1927Über kapillare leitung des wassers im boden. Royal Academy of Science Vienna, Proc. Class I136, 271-306.
[24] Kunii, D. & Levenspiel, O.1991Chapter 3 - Fluidization and Mapping of Regimes, pp. 61-94. Butterworth-Heinemann.
[25] Li, L., Wu, P., Rehman, A., Wang, L., Zhang, S. & Xie, Z.-A.2017aEnergy-dissipation correlated size separation of granular matter under coupling vibration and airflow. Powder Technol.307, 84-89.
[26] Li, L., Wu, P., Zhang, S. & Wang, L.2017bDiversity and controllability of particle distribution under coupling vibration and airflow. Soft Matt.13 (39), 7034-7045.
[27] Li, L., Wu, P., Zhang, S. & Wang, L.2019Vertical separation criterion of binary particles under external excitation. Powder Technol.342, 404-408.
[28] Li, T., Gopalakrishnan, P., Garg, R. & Shahnam, M.2012CFD-DEM study of effect of bed thickness for bubbling fluidized beds. Particuology10 (5), 532-541.
[29] Li, T., Zhang, Y. & Hernández-Jiménez, F.2016Investigation of particle-wall interaction in a pseudo-2D fluidized bed using CFD-DEM simulations. Particuology25, 10-22.
[30] Liu, C., Wang, L., Wu, P. & Jia, M.2010Effects of gas flow on granular size separation. Phys. Rev. Lett.104, 188001.
[31] Mawatari, Y., Tatemoto, Y. & Noda, K.2003Prediction of minimum fluidization velocity for vibrated fluidized bed. Powder Technol.131 (1), 66-70.
[32] Mclaren, C.P., Kovar, T.M., Penn, A., Müller, C.R. & Boyce, C.M.2019Gravitational instabilities in binary granular materials. Proc. Natl Acad. Sci. USA116 (19), 9263-9268.
[33] Mclaren, C.P., Metzger, J.P., Boyce, C.M. & Müller, C.R.2021Reduction in minimum fluidization velocity and minimum bubbling velocity in gas-solid fluidized beds due to vibration. Powder Technol.382, 566-572.
[34] Metzger, J.P., Mclaren, C.P., Pinzello, S., Conzelmann, N.A., Boyce, C.M. & Müller, C.R.2022Sinking dynamics and splitting of a granular droplet. Phys. Rev. Fluids7, 014309.
[35] Nitsche, J.M. & Batchelor, G.K.1997Break-up of a falling drop containing dispersed particles. J. Fluid Mech.340, 161-175. · Zbl 0892.76020
[36] Pusey, P.N.1987The effect of polydispersity on the crystallization of hard spherical colloids. J. Phys.48 (5), 709-712.
[37] Rosato, A., Strandburg, K.J., Prinz, F. & Swendsen, R.H.1987Why the Brazil nuts are on top: size segregation of particulate matter by shaking. Phys. Rev. Lett.58 (10), 1038-1040.
[38] Rybczynski, W.1911Über die fortschreitende bewegung einer flüssigen kugel in einem zähen medium. Bull. Acad. Sci. Cracovie A1, 40-46. · JFM 42.0811.02
[39] Shinbrot, T.2004Granular materials - the Brazil nut effect - in reverse. Nature429 (6990), 352-353.
[40] Sommerfeld, M.2018Bewegung fester Partikel in Gasen und Flüssigkeiten, pp. 1-17. Springer.
[41] Trujillo, L., Alam, M. & Herrmann, H.J.2003Segregation in a fluidized binary granular mixture: competition between buoyancy and geometric forces. Europhys. Lett.64 (2), 190-196.
[42] Tsuji, Y., Kawaguchi, T. & Tanaka, T.1993Discrete particle simulation of two-dimensional fluidized bed. Powder Technol.77 (1), 79-87.
[43] Vinningland, J.L., Johnsen, Ø., Flekkøy, E.G., Toussaint, R. & Måløy, K.J.2007Granular Rayleigh-Taylor instability: experiments and simulations. Phys. Rev. Lett.99, 048001.
[44] Zenit, R., Hunt, M.L. & Brennen, C.E.1997Collisional particle pressure measurements in solid-liquid flows. J. Fluid Mech.353, 261-283.
[45] Zhou, Z.Y., Kuang, S.B., Chu, K.W. & Yu, A.B.2010Discrete particle simulation of particle-fluid flow: model formulations and their applicability. J. Fluid Mech.661, 482-510. · Zbl 1205.76278
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.