×

Formation of a relation of nonlocalities in the anomalous diffusion model. (English. Russian original) Zbl 1387.82020

Theor. Math. Phys. 193, No. 1, 1508-1523 (2017); translation from Teor. Mat. Fiz. 193, No. 1, 115-132 (2017).
Summary: We construct a model of a random walk in which the relation of space-time nonlocalities is defined by the structure of memory flow and a stochastic force model. The proposed model allows computing the parameters that characterize the nonlocality of the medium exposure and the particle memory.

MSC:

82B24 Interface problems; diffusion-limited aggregation arising in equilibrium statistical mechanics
60J60 Diffusion processes
82B31 Stochastic methods applied to problems in equilibrium statistical mechanics
60J70 Applications of Brownian motions and diffusion theory (population genetics, absorption problems, etc.)
28A80 Fractals
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] R. Metzler and J. Klafter, “The random walk’s guide to anomalous diffusion: A fractional dynamics approach,” Phys. Rep., 339, 1-77 (2000). · Zbl 0984.82032 · doi:10.1016/S0370-1573(00)00070-3
[2] V. V. Uchaikin, “Self-similar anomalous diffusion and Levy-stable laws,” Phys. Usp., 46, 821-849 (2003). · doi:10.1070/PU2003v046n08ABEH001324
[3] B. B. Mandelbrot and J. W. Van Ness, “Fractional Brownian motions, fractional noises, and applications,” SIAM Rev., 10, 422-437 (1968). · Zbl 0179.47801 · doi:10.1137/1010093
[4] A. I. Olemskoi and A. Ya. Flat, “Application of fractals in condensed-matter physics,” Phys. Usp., 36, 1087-1128 (1993). · doi:10.1070/PU1993v036n12ABEH002208
[5] R. R. Nigmatullin, “Fractional integral and its physical interpretation,” Theor. Math. Phys., 90, 242-251 (1992). · Zbl 0795.26007 · doi:10.1007/BF01036529
[6] V. P. Budaev, S. P. Savin, and L. M. Zelenyi, “Investigation of intermittency and generalized self-similarity of turbulent boundary layers in laboratory and magnetospheric plasmas: Towards a quantitative definition of plasma transport features,” Phys. Usp., 54, 875-918 (2011). · doi:10.3367/UFNe.0181.201109a.0905
[7] V. P. Budaev and L. N. Khimchenko, “Fractal structure of films deposited in a tokamak,” JETP, 104, 629-643 (2007). · doi:10.1134/S1063776107040139
[8] A. A. Khamzin, R. R. Nigmatullin, and I. I. Popov, “Microscopic model of a non-Debye dielectric relaxation: The Cole-Cole law and its generalization,” Theor. Math. Phys., 173, 1604-1619 (2012). · Zbl 1284.82084 · doi:10.1007/s11232-012-0135-1
[9] I. A. Ibragimov and Yu. V. Linnik, Independent and Stationarily Related Quantities [in Russian], Nauka, Moscow (1965) · Zbl 0154.42201
[10] English transl.: Independent and Stationary Sequences of Random Variables, Wolters-Noordhoff, Groningen (1971). · Zbl 0219.60027
[11] N. S. Arkashov and I. S. Borisov, “Gaussian approximation to the partial sum processes of moving averages,” Siberian Math. J., 45, 1000-1030 (2004). · Zbl 1094.62109 · doi:10.1023/B:SIMJ.0000048916.15922.b4
[12] T. Konstantopoulos and A. Sakhanenko, “Convergence and convergence rate to fractional Brownian motion for weighted random sums,” Sib. Èlektron. Mat. Izv., 1, 47-63 (2004). · Zbl 1079.60025
[13] G. Edgar, Measure, Topology, and Fractal Geometry, Springer, New York (2008). · Zbl 1152.28008 · doi:10.1007/978-0-387-74749-1
[14] L. N. Bol’shev and N. V. Smirnov, Tables of Mathematical Statistics [in Russian], Nauka, Moscow (1983). · Zbl 0529.62099
[15] E. Alós, O. Mazet, and D. Nualart, “Stochastic calculus with respect to Gaussian processes,” Ann. Probab., 29, 766-801 (2001). · Zbl 1015.60047 · doi:10.1214/aop/1008956692
[16] J. Feder, Fractals, Plenum Press, New York (1988). · Zbl 0648.28006 · doi:10.1007/978-1-4899-2124-6
[17] M. R. Leadbetter, G. Lindgren, and H. Rootzen, Extremes and Related Properties of Random Sequences and Processes, Springer, New York (1983). · Zbl 0518.60021 · doi:10.1007/978-1-4612-5449-2
[18] E. A. Gorin and B. N. Kukushkin, “Integrals related to the Cantor ladder,” St. Petersburg Math. J., 15, 449-468 (2004). · Zbl 1065.26008 · doi:10.1090/S1061-0022-04-00817-9
[19] P. Billingsley, Convergence of Probability Measures, Wiley, New York (1968). · Zbl 0172.21201
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.