×

Non-linear adaptive sliding mode switching control with average dwell-time. (English) Zbl 1307.93088

Summary: In this article, an adaptive integral sliding mode control scheme is addressed for switched non-linear systems in the presence of model uncertainties and external disturbances. The control law includes two parts: a slide mode controller for the reduced model of the plant and a compensation controller to deal with the non-linear systems with parameter uncertainties. The adaptive updated laws have been derived from the switched multiple Lyapunov function method, also an admissible switching signal with average dwell-time technique is given. The simplicity of the proposed control scheme facilitates its implementation and the overall control scheme guarantees the global asymptotic stability in the Lyapunov sense such that the sliding surface of the control system is well reached. Simulation results are presented to demonstrate the effectiveness and the feasibility of the proposed approach.

MSC:

93B10 Canonical structure
93C40 Adaptive control/observation systems
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Branicky M, IEEE Transactions on Automatic Control 43 pp 475– (1998) · Zbl 0904.93036 · doi:10.1109/9.664150
[2] Chen XK, Automatica 42 pp 427– (2006) · Zbl 1123.93063 · doi:10.1016/j.automatica.2005.10.008
[3] Colaneri P, Systems and Control Letters 57 pp 95– (2008) · Zbl 1129.93042 · doi:10.1016/j.sysconle.2007.07.001
[4] Guan C, Control Engineering Practice 16 pp 1275– (2008) · doi:10.1016/j.conengprac.2008.02.002
[5] Han TT, Systems and Control Papers 58 pp 109– (2009) · Zbl 1155.93414 · doi:10.1016/j.sysconle.2008.09.002
[6] Hespanha , J . and Morse, A.S. (1999), ’Stability of Switched Systems with Average Dwell-time’, inProceedings of the 38th IEEE Conference on Decision and Control, Phoenix, Arizona, pp. 2655–2660
[7] Ho HF, Simulation Modelling Practice and Theory 17 pp 1199– (2009) · Zbl 05726033 · doi:10.1016/j.simpat.2009.04.004
[8] Kanellakopoulos I, IEEE Transactions on Automatic Control 36 pp 1241– (1991) · Zbl 0768.93044 · doi:10.1109/9.100933
[9] Labiod S, International Journal of Systems Science 38 pp 665– (2007) · Zbl 1128.93032 · doi:10.1080/00207720701500583
[10] Liberzon D, Switching in Systems and Control (2003) · doi:10.1007/978-1-4612-0017-8
[11] Liu YJ, International Journal of Systems Science 41 pp 143– (2010) · Zbl 1292.93078 · doi:10.1080/00207720903042947
[12] Mihajlov M, Facta University Atis (Series: Mechanical Engineering) 1 pp 1217– (2002)
[13] Mohamad SA, Mathematical and Computer Modelling 48 pp 1150– (2008) · Zbl 1187.34067 · doi:10.1016/j.mcm.2007.12.024
[14] Persis CD, Systems and Control Letters 50 pp 291– (2003) · Zbl 1157.93510 · doi:10.1016/S0167-6911(03)00161-0
[15] Roh Y, International Journal of Control 73 pp 1255– (2000) · Zbl 0992.93008 · doi:10.1080/002071700417894
[16] Ruan RY, International Journal of Systems Science 37 pp 207– (2006) · Zbl 1111.93037 · doi:10.1080/00207720600566446
[17] Slotine JJ, Applied Nonlinear Control (1991)
[18] Wu JL, Automatica 45 pp 1092– (2009) · Zbl 1162.93030 · doi:10.1016/j.automatica.2008.12.004
[19] Yang H, Systems and Control Letters 58 pp 703– (2009) · Zbl 1181.93074 · doi:10.1016/j.sysconle.2009.06.007
[20] Yoon SS, Automatica 44 pp 3176– (2008) · Zbl 1153.93498 · doi:10.1016/j.automatica.2008.10.003
[21] Yu L, Neurocomputing 73 pp 2274– (2010) · Zbl 05721424 · doi:10.1016/j.neucom.2010.03.012
[22] Zhang L, International Journal of Systems Science 42 pp 781– (2011) · Zbl 1233.93038 · doi:10.1080/00207721003764158
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.