×

Non-Gaussian noise benefits for coherent detection of narrowband weak signal. (English) Zbl 1342.94054

Summary: In an ad hoc suboptimal detector, the benefits of non-Gaussian noise to narrowband weak signal detection are demonstrated. Particularly, for a noise envelope with a Rice distribution, we can improve the detector performance by tuning threshold parameter but keeping noise level, or increasing the noise level for a fixed threshold. It is verified that, under certain circumstances, the optimal detection probability achieved by tuning noise level is superior to that obtained by optimizing the detector threshold.

MSC:

94A13 Detection theory in information and communication theory
PDFBibTeX XMLCite
Full Text: DOI HAL

References:

[1] Kassam, S. A., Signal Detection in Non-Gaussian Noise (1988), Springer-Verlag: Springer-Verlag New York
[2] Modestino, J. W.; Ningo, A. Y., Detection of weak signals in narrowband non-Gaussian noise, IEEE Trans. Inf. Theory, 25, 592-600 (1979) · Zbl 0432.94001
[3] Lu, N. H.; Eisenstein, B. A., Detection of weak signals in non-Gaussian noise, IEEE Trans. Inf. Theory, 27, 755-771 (1981) · Zbl 0465.94003
[4] Lu, N. H.; Eisenstein, B. A., Suboptimum detection of weak signals in non-Gaussian noise, IEEE Trans. Inf. Theory, 29, 462-466 (1983)
[5] Benzi, R.; Sutera, A.; Vulpiani, A., The mechanism of stochastic resonance, J. Phys. A, Math. Gen., 14, L453-L457 (1981)
[6] Loerincz, K.; Gingl, Z.; Kish, L. B.; Bulsara, A. R., Higher order stochastic resonance in a level-crossing detector, Phys. Lett. A, 254, 154-157 (1999)
[7] Pei, X.; Bachmann, K.; Moss, F., The detection threshold, noise and stochastic resonance in the Fitzhugh-Nagumo neuron model, Phys. Lett. A, 206, 61-65 (1995)
[8] Jung, P., Stochastic resonance and optimal design of threshold detectors, Phys. Lett. A, 207, 93-104 (1995)
[9] Kay, S., Can detectability be improved by adding noise?, IEEE Signal Process. Lett., 7, 8-10 (2000)
[10] Zozor, S.; Amblard, P. O., Stochastic resonance in locally optimal detectors, IEEE Trans. Signal Process., 51, 3177-3181 (2003) · Zbl 1369.94385
[11] Chen, H.; Varshney, P. K.; Kay, S. M.; Michels, J. H., Noise enhanced nonparametric detection, IEEE Trans. Inf. Theory, 55, 499-506 (2009) · Zbl 1367.94112
[12] Morse, R.; Longtin, A., Coherence and stochastic resonance in threshold crossing detectors with delayed feedback, Phys. Lett. A, 359, 640-646 (2006)
[13] Chapeau-Blondeau, F.; Rousseau, D., Raising the noise to improve performance in optimal processing, J. Stat. Mech. Theory Exp., 1 (2009), P01003
[14] Patel, A.; Kosko, B., Noise benefits in quantizer-array correlation detection and watermark decoding, IEEE Trans. Signal Process., 59, 488-505 (2011) · Zbl 1392.94647
[15] Duan, F.; Chapeau-Blondeau, F.; Abbott, D., Fisher information as a metric of locally optimal processing and stochastic resonance, PLoS ONE, 7 (2012), e34282
[16] Fierens, P. I.; Ibáñez, S. A.; Perazzo, R. P.J.; Patterson, G. A.; Grosz, D. F., A memory device sustained by noise, Phys. Lett. A, 374, 2207-2209 (2010) · Zbl 1237.81036
[17] Barbay, S.; Giacomelli, G.; Marin, F., Noise-assisted transmission of binary information: Theory and experiment, Phys. Rev. E, 63 (2001), 051110
[18] Patterson, G. A.; Goya, A. F.; Fierens, P. I.; Ibáñez, S. A.; Grosz, D. F., Experimental investigation of noise-assisted information transmission and storage via stochastic resonance, Physica A, 389, 1965-1970 (2010)
[19] Stocks, N. G., Information transmission in parallel threshold arrays: suprathreshold stochastic resonance, Phys. Rev. E, 63 (2001), 041114
[20] Duan, F.; Chapeau-Blondeau, F.; Abbott, D., Exploring weak-periodic-signal stochastic resonance in locally optimal processors with a Fisher information metric, Signal Process., 92, 3049-3055 (2012)
[21] Bayram, S.; Gezici, S., Stochastic resonance in binary composite hypothesis-testing problems in the Neyman-Pearson framework, Digit. Signal Process., 22, 391-406 (2012)
[22] Hari, V. N.; Anand, G. V.; Premkumar, A. B.; Madhukumar, A. S., Design and performance analysis of a signal detector based on suprathreshold stochastic resonance, Signal Process., 92, 1745-1757 (2012)
[23] Hall, H. M., A New Model for ‘Impulsive’ Phenomena: Application to Atmospheric-Noise Communication Channels (1966), Stanford University: Stanford University California, Ph.D. dissertation
[24] Shin, J. G.; Kassam, S. A., Robust detector for narrow-band signals in non-Gaussian noise, J. Acoust. Soc. Am., 74, 527-533 (1983)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.