×

Generality of the final size formula for an epidemic of a newly invading infectious disease. (English) Zbl 1334.92419

Summary: The well-known formula for the final size of an epidemic was published by W. O. Kermack and A. G. McKendrick in [“A contribution to the mathematical theory of epidemics”, Proc. R. Soc. Lond. Ser. A 115, 700–721 (1927)]. Their analysis was based on a simple susceptible-infected-recovered (SIR) model that assumes exponentially distributed infectious periods. More recent analyses have established that the standard final size formula is valid regardless of the distribution of infectious periods, but that it fails to be correct in the presence of certain kinds of heterogeneous mixing (e.g., if there is a core group, as for sexually transmitted diseases). We review previous work and establish more general conditions under which Kermack and McKendrick’s formula is valid. We show that the final size formula is unchanged if there is a latent stage, any number of distinct infectious stages and/or a stage during which infectives are isolated (the durations of each stage can be drawn from any integrable distribution). We also consider the possibility that the transmission rates of infectious individuals are arbitrarily distributed – allowing, in particular, for the existence of super-spreaders – and prove that this potential complexity has no impact on the final size formula. Finally, we show that the final size formula is unchanged even for a general class of spatial contact structures. We conclude that whenever a new respiratory pathogen emerges, an estimate of the expected magnitude of the epidemic can be made as soon the basic reproduction number \(\mathcal R_{0}\) can be approximated, and this estimate is likely to be improved only by more accurate estimates of \(\mathcal R_{0}\), not by knowledge of any other epidemiological details.

MSC:

92D30 Epidemiology
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Anderson, D.; Watson, R., On the spread of a disease with gamma distributed latent and infectious periods, Biometrika, 67, 1, 191-198 (1980) · Zbl 0421.92023 · doi:10.1093/biomet/67.1.191
[2] Anderson, R. M.; May, R. M., Infectious Diseases of Humans: Dynamics and Control (1991), Oxford: Oxford University Press, Oxford
[3] Anderson, R. M.; Medley, G. F.; May, R. M.; Johnson, A. M., A preliminary study of the transmission dynamics of the human immunodeficiency virus (HIV), the causative agent of AIDS, IMA J. Math. Appl. Med. Biol., 3, 4, 229-263 (1986) · Zbl 0609.92025 · doi:10.1093/imammb/3.4.229
[4] Andersson, H., Britton, T., 2000. Stochastic epidemic models and their statistical analysis. Lecture Notes in Statistics, vol. 151. Springer-Verlag, New York. · Zbl 0951.92021
[5] Andersson, M., The asymptotic final size distribution of multitype chain-binomial epidemic processes, Adv. Appl. Prob, 31, 220-234 (1999) · Zbl 0926.92028 · doi:10.1239/aap/1029954274
[6] Andreasen, V., Dynamics of annual influenza a epidemics with immuno-selection, J. Math. Biol., 46, 6, 504-536 (2003) · Zbl 1037.92031 · doi:10.1007/s00285-002-0186-2
[7] Bailey, N. T.J., The Mathematical Theory of Infectious Diseases and its Application (1975), London: Griffin, London · Zbl 0334.92024
[8] Brauer, F., Castillo-Chavez, C., 2001. Mathematical models in population biology and epidemiology. Texts in Applied Mathematics, vol. 40. Springer-Verlag, New York. · Zbl 0967.92015
[9] Diekmann, O., Heesterbeek, J.A.P., 2000. Mathematical epidemiology of infectious diseases: Model building, analysis and interpretation. Wiley Series in Mathematical and Computational Biology. John Wiley & Sons, LTD, New York. · Zbl 0997.92505
[10] Donnelly, C. A.; Ghani, A. C.; Leung, G. M.; Hedley, A. J.; Fraser, C.; Riley, S.; Abu-Raddad, L. J.; Ho, L. M.; Thach, T. Q.; Chau, P.; Chan, K. P.; Lam, T. H.; Tse, L. Y.; Tsang, T.; Liu, S. H.; Kong, J. H.B.; Lau, E. M.C.; Ferguson, N. M.; Anderson, R. M., Epidemiological determinants of spread of causal agent of severe acute respiratory syndrome in Hong Kong, Lancet, 361, 9371, 1761-1766 (2003) · doi:10.1016/S0140-6736(03)13410-1
[11] Dwyer, G.; Dushoff, J.; Elkinton, J. S.; Levin, S. A., Pathogen-driven outbreaks in forest defoliators revisited: Building models from exprimental data, Am. Nat, 156, 105-120 (2000) · doi:10.1086/303379
[12] Earn, D. J.D.; Dushoff, J.; Levin, S. A., Ecology and evolution of the flu, Trends Ecol. Evol., 17, 7, 334-340 (2002) · doi:10.1016/S0169-5347(02)02502-8
[13] Earn, D. J.D.; Levin, S. A.; Rohani, P., Coherence and conservation, Science, 290, 5495, 1360-1364 (2000) · doi:10.1126/science.290.5495.1360
[14] Earn, D. J.D.; Rohani, P.; Bolker, B. M.; Grenfell, B. T., A simple model for complex dynamical transitions in epidemics, Science, 287, 5453, 667-670 (2000) · doi:10.1126/science.287.5453.667
[15] Feng, Z. L.; Thieme, H. R., Endemic models with arbitrarily distributed periods of infection I: Fundamental properties of the model, SIAM J. Appl. Math., 61, 3, 803-833 (2000) · Zbl 0991.92028 · doi:10.1137/S0036139998347834
[16] Gart, J.J., 1968. The mathematical analysis of an epidemic with two kinds of susceptibles. Biometrics 557-566.
[17] Hanski, I. A.; Gilpin, M. E., Metapopulation Biology: Ecology, Genetics, and Evolution (1997), San Diego: Academic Press, San Diego · Zbl 0913.92025
[18] Horn, R. A.; Johnson, C. R., Matrix Analysis (1985), Cambridge: Cambridge University Press, Cambridge · Zbl 0576.15001
[19] Hyman, J.M., Li, J.A.S.E., 1999. The differential infectivity and staged progression models for the transmission of HIV. Math. Biosci. 77-109. · Zbl 0942.92030
[20] Kermack, W.O., McKendrick, A.G., 1927. A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. Ser. A 115, 700-721. · JFM 53.0517.01
[21] Kurtz, T. G., Relationships between stochastic and deterministic population models, Lect. Notes Biomath, 38, 449-467 (1980) · Zbl 0471.92014
[22] Lipsitch, M.; Cohen, T.; Cooper, B.; Robins, J. M.; Ma, S.; James, L.; Gopalakrishna, G.; Chew, S. K.; Tan, C. C.; Samore, M. H.; Fisman, D.; Murray, M., Transmission dynamics and control of severe acute respiratory syndrome, Science, 300, 5627, 1966-1970 (2003) · doi:10.1126/science.1086616
[23] Lloyd, A. L., Destabilization of epidemic models with the inclusion of realistic distributions of infectious periods, Proc. R. Soc. Lond. Ser. B, 268, 1470, 985-993 (2001) · doi:10.1098/rspb.2001.1599
[24] Lloyd, A. L., Realistic distributions of infectious periods in epidemic models: Changing patterns of persistence and dynamics, Theor. Popul. Biol., 60, 1, 59-71 (2001) · doi:10.1006/tpbi.2001.1525
[25] London, W.; Yorke, J. A., Recurrent outbreaks of measles, chickenpox and mumps. i. seasonal variation in contact rates, Am. J. Epidemiol., 98, 6, 453-468 (1973)
[26] Low, D. E.; McGeer, A., SARS—one year later, N. Engl. J. Med., 349, 25, 2381-2382 (2003) · doi:10.1056/NEJMp038203
[27] Poutanen, S. M.; Low, D. E.; Henry, B.; Finkelstein, S.; Rose, D.; Green, K.; Tellier, R.; Draker, R.; Adachi, D.; Ayers, M.; Chan, A. K.; Skowronski, D. M.; Salit, I.; Simor, A. E.; Slutsky, A. S.; Doyle, P. W.; Krajden, M.; Petric, M.; Brunham, R. C.; McGeer, A. J., Identification of severe acute respiratory syndrome in Canada, N. Engl. J. Med., 348, 20, 1995-2005 (2003) · doi:10.1056/NEJMoa030634
[28] Redfield, R. R.; Wright, D. C.; Tramont, E. C., The Walter Reed staging classification for HTLV-III/LAV infection, N. Eng. J. Med, 314, 131-132 (1986)
[29] Scalia-Tomba, G., Asymptotic final size distribution for some chain-binomial processes, Adv. Appl. Prob, 17, 477-495 (1985) · Zbl 0581.92023 · doi:10.2307/1427116
[30] Scalia-Tomba, G., Asymptotic final size distribution of the multitype reed-frost process, Adv. Appl. Prob, 23, 563-584 (1986) · Zbl 0608.92011
[31] Schenzle, D., An age-structured model of pre- and post-vaccination measles transmission, IMA J. Math. Appl. Med. Biol, 1, 169-191 (1984) · Zbl 0611.92021 · doi:10.1093/imammb/1.2.169
[32] Schwartz, I.; Smith, H., Infinite subharmonic bifurcation in an SEIR model, J. Math. Biol, 18, 233-253 (1983) · Zbl 0523.92020 · doi:10.1007/BF00276090
[33] Seligmann, M.; Pinching, A. J.; Rosen, F. S.E. A., Immunology of human immunodeficiency virus and the acquired immune dificiency syndrome, Ann. Int. Med., 107, 2, 234-242 (1987)
[34] van den Driessche, P.; Watmough, J., Reproduction numbers and subthreadold endemic equilibria for compartmental models fo disease transmission, Math. Biosci, 180, 29-48 (2002) · Zbl 1015.92036 · doi:10.1016/S0025-5564(02)00108-6
[35] Von Bahr, B.; Martin-Lof, A., Threshold limit theorems for some epidemic processes, Adv. Appl. Prob, 12, 319-349 (1980) · Zbl 0425.60074 · doi:10.2307/1426600
[36] Wallinga, J.; Teunis, P., Different epidemic curves for severe acute respiratory syndrome reveal similar impacts of control measures, Am. J. Eoidemiol, 160, 509-516 (2004) · doi:10.1093/aje/kwh255
[37] Weisstein, E.W., Lambert W-Function. From MathWorld—A Wolfram Web Resource. http://mathworld.wolfram.com/LambertW-Function.html.
[38] WHO SARS Update 27, 2003. Severe acute respiratory syndrome (SARS), multi-country outbreak. Technical report, W.H.O. http://www.who.int/csr/sars/archive/2003_04_11/en/print.html.
[39] WHO SARS Update 33, 2003. Severe acute respiratory syndrome (SARS), multi-country outbreak. Technical report, W.H.O. http://www.who.int/csr/sars/archive/2003_04_18/en/print.html.
[40] Yorke, J.A., Hethcote, H.W., 1984. Gonorrhea: Transmission dynamics and control. Lecture notes in Biomathematics, 56, 1-105. Springer-Verlag, Berlin. · Zbl 0542.92026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.