×

New approach for stability and bifurcation analysis on predator-prey harvesting model for interval biological parameters with time delays. (English) Zbl 1401.92163

Summary: This paper presents a prey-predator harvesting model with time delay for bifurcation analysis. We consider the parameters of the proposed model with imprecise data as form of interval in nature, due to the lack of precise numerical information of the biological parameters such as prey population growth rate and predator population decay rate. The interaction between prey and predator is assumed to be governed by a Holling type II functional response and discrete type gestation delay of the predator for consumption of the prey under impreciseness of the biological parameters. Parametric functional form of interval number with two parameters is introduced. This study reveals that not only delay and harvesting effort play a significant role on the stability on the system but also interval parameters play a crucial role on the stability of the system. Computer simulations of numerical examples are given to explain our proposed imprecise model. We also address critically the biological implications of our analytical findings with proper numerical example.

MSC:

92D25 Population dynamics (general)
34D23 Global stability of solutions to ordinary differential equations
34C23 Bifurcation theory for ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abbas, S; Banerjee, M; Hungerbuhler, N, Existence, uniqueness and stability analysis of allelopathic stimulatory phytoplankton model, J Math Anal Appl, 367, 249-259, (2010) · Zbl 1185.92087 · doi:10.1016/j.jmaa.2010.01.024
[2] Abundo, M, Stochastic model for predator-prey systems: basic properties, stability and computer simulation, J Math Biol, 29, 495-511, (1991) · Zbl 0737.92018 · doi:10.1007/BF00164048
[3] Aguirre, P; Olivares, EG; Torres, S, Stochastic predator-prey model with allee effect on prey, Nonlinear Anal Real World Appl, 14, 768-779, (2013) · Zbl 1263.92043 · doi:10.1016/j.nonrwa.2012.07.032
[4] Anita, L; Anita, S; Arnautu, V, Optimal harvesting for periodic age-dependent population dynamics with logistic term, Appl Math Comput, 215, 2701-2715, (2009) · Zbl 1179.92057
[5] Bairagi, N; Chaudhuri, S; Chattopadhyay, J, Harvesting as a disease control measure in an eco-epidemiological system—a theoretical study, Math Biosci, 217, 134-144, (2009) · Zbl 1157.92030 · doi:10.1016/j.mbs.2008.11.002
[6] Bandyopadhyay, M; Banerjee, S, A stage-structured prey-predator model with discrete time delay, Appl Math Comput, 182, 1385-1398, (2006) · Zbl 1102.92044
[7] Barros, LC; Bassanezi, RC; Tonelli, PA, Fuzzy modelling in population dynamics, Ecol Model, 128, 27-33, (2000) · doi:10.1016/S0304-3800(99)00223-9
[8] Bassanezi, RC; Barros, LC; Tonelli, A, Attractors and asymptotic stability for fuzzy dynamical systems, Fuzzy Sets Syst, 113, 473-483, (2000) · Zbl 0954.37022 · doi:10.1016/S0165-0114(98)00142-0
[9] Brikhoff G, Rota GC (1982) Ordinary differential equations. Ginn, Boston · Zbl 0476.34002
[10] Chen, FD, On a nonlinear nonautonomous predator-prey model with diffusion and distributed delay, J Comput Appl Math, 180, 33-49, (2005) · Zbl 1061.92058 · doi:10.1016/j.cam.2004.10.001
[11] Chen, FD; Li, Z; Chen, X; Jitka, L, Dynamic behaviours of a delay differential equation model of plankton allelopathy, J Comput Appl Math, 206, 733-754, (2007) · Zbl 1125.34066 · doi:10.1016/j.cam.2006.08.020
[12] Chen, F; Ma, Z; Zhang, H, Global asymptotical stability of the positive equilibrium of the Lotka-Volterra prey-predator model incorporating a constant number of prey refuges, Nonlinear Anal Real World Appl, 13, 2790-2793, (2012) · Zbl 1254.92073 · doi:10.1016/j.nonrwa.2012.04.006
[13] Chen, L; Chen, F; Wang, Y, Influence of predator mutual interference and prey refuge on Lotka-Volterra predator-prey dynamics, Commun Nonlinear Sci Numer Simul, 18, 3174-3180, (2013) · Zbl 1329.92102 · doi:10.1016/j.cnsns.2013.04.004
[14] Das, KP; Roy, S; Chattopadhyay, J, Effect of disease-selective predation on prey infected by contact and external sources, BioSystems, 95, 188-199, (2009) · doi:10.1016/j.biosystems.2008.10.003
[15] Duncan, S; Hepburn, C; Papachristodoulou, A, Optimal harvesting of fish stocks under a time-varying discount rate, J Theor Biol, 269, 166-173, (2011) · Zbl 1307.91143 · doi:10.1016/j.jtbi.2010.10.002
[16] Erbe, LH; Rao, VSH; Freedman, H, Three-species food chain models with mutual interference and time delays, Math Biosci, 80, 57-80, (1986) · Zbl 0592.92024 · doi:10.1016/0025-5564(86)90067-2
[17] Freedman, HI; Rao, VSH, The trade-of between mutual interference and time lags in predator-prey systems, Bull Math Biol, 45, 991-1003, (1983) · Zbl 0535.92024 · doi:10.1007/BF02458826
[18] Gopalsamy, K, Harmless delay in model systems, Bull Math Biol, 45, 295-309, (1983) · Zbl 0514.34060 · doi:10.1007/BF02459394
[19] Gupta, RP; Chandra, P, Bifurcation analysis of modified Leslie-gower predator-prey model with Michaelis-Menten type prey harvesting, J Math Anal Appl, 338, 278-295, (2013) · Zbl 1259.34035 · doi:10.1016/j.jmaa.2012.08.057
[20] Hethcote, HW; Wang, W; Han, L; Ma, Z, A predator-prey model with infected prey, Theor Popul Biol, 66, 259-268, (2004) · doi:10.1016/j.tpb.2004.06.010
[21] Hoekstra J, van den Bergh J (2005) Harvesting and conservation in a predator-prey system. J Econ Dyn Control 29:1097-1120 · Zbl 1202.91248
[22] Jiao, J; Chen, I; Yang, X; Cai, S, Dynamical analysis of a delayed predator-prey model with impulsive diffusion between two patches, Math Comput Simul, 80, 522-532, (2009) · Zbl 1190.34107 · doi:10.1016/j.matcom.2009.07.008
[23] Kar, TK, Selective harvesting in a prey-predator fishery with time delay, Math Comput Model, 38, 449-458, (2003) · Zbl 1045.92046 · doi:10.1016/S0895-7177(03)90099-9
[24] Kot M (2001) Elements of mathematical ecology. Cambridge University Press, Cambridge · Zbl 1060.92058 · doi:10.1017/CBO9780511608520
[25] Kuang, Y; Freedman, HI, Uniqueness of limit cycles in gause-type models of predator-prey systems, Math Biosci, 88, 67-84, (1988) · Zbl 0642.92016 · doi:10.1016/0025-5564(88)90049-1
[26] Liu, M; Wang, K, Extinction and global asymptotical stability of a nonautonomous predator-prey model with random perturbation, Appl Math Model, 36, 5344-5353, (2012) · Zbl 1254.34074 · doi:10.1016/j.apm.2011.12.057
[27] MacDonald M (1989) Biological delay systems: linear stability theory. Cambridge University Press, Cambridge · Zbl 0669.92001
[28] Mahapatra, GS; Mandal, TK, Posynomial parametric geometric programming with interval valued coefficient, J Optim Theory Appl, 154, 120-132, (2012) · Zbl 1252.90080 · doi:10.1007/s10957-012-9996-6
[29] Misra, AK; Dubey, B, A ratio-dependent predator-prey model with delay and harvesting, J Biol Syst, 18, 437-453, (2010) · Zbl 1342.92193 · doi:10.1142/S021833901000341X
[30] Murray JD (1993) Mathematical biology. Springer, New York · Zbl 0779.92001 · doi:10.1007/978-3-662-08542-4
[31] Pal, D; Mahapatra, GS, A bioeconomic modeling of two-prey and one-predator fishery model with optimal harvesting policy through hybridization approach, Appl Math Comput, 242, 748-763, (2014) · Zbl 1334.35362
[32] Pal, AK; Samanta, GP, Stability analysis of an eco-epidemiological model incorporating a prey refuge, Nonlinear Anal Model Control, 15, 473-491, (2010) · Zbl 1339.49033
[33] Pal, D; Mahapatra, GS; Samanta, GP, A proportional harvesting dynamical model with fuzzy intrinsic growth rate and harvesting quantity, Pac Asian J Math, 6, 199-213, (2012)
[34] Pal, D; Mahapatra, GS; Samanta, GP, Quota harvesting model for a single species population under fuzziness, Int J Math Sci, 12, 33-46, (2013)
[35] Pal, D; Mahapatra, GS; Samanta, GP, Optimal harvesting of prey-predator system with interval biological parameters: a bioeconomic model, Math Biosci, 24, 181-187, (2013) · Zbl 1402.92362 · doi:10.1016/j.mbs.2012.11.007
[36] Palma, A; Olivares, E, Optimal harvesting in a predator-prey model with allee effect and Sigmoid functional response, Appl Math Comput, 36, 1864-1874, (2012) · Zbl 1243.49046
[37] Pal D, Mahapatra GS, Samanta GP (2014) Bifurcation analysis of predator-prey model with time delay and harvesting efforts using interval parameter. Int J Dyn Control. doi:10.1007/s40435-014-0083-8
[38] Peixoto, M; Barros, LC; Bassanezi, RC, Predator-prey fuzzy model, Ecol Model, 214, 39-44, (2008) · doi:10.1016/j.ecolmodel.2008.01.009
[39] Qu, Y; Wei, J, Bifurcation analysis in a time-delay model for prey-predator growth with stage-structure, Nonlinear Dyn, 49, 285-294, (2007) · Zbl 1176.92056 · doi:10.1007/s11071-006-9133-x
[40] Rebaza, J, Dynamics of prey threshold harvesting and refuge, J Comput Appl Math, 236, 1743-1752, (2012) · Zbl 1235.92048 · doi:10.1016/j.cam.2011.10.005
[41] Rudnicki, R, Long-time behaviour of a stochastic prey-predator model, Stoch Process Appl, 108, 93-107, (2003) · Zbl 1075.60539 · doi:10.1016/S0304-4149(03)00090-5
[42] Shao, Y, Analysis of a delayed predator-prey system with impulsive diffusion between two patches, Math Comput Model, 52, 120-127, (2010) · Zbl 1201.34086 · doi:10.1016/j.mcm.2010.01.021
[43] Tuyako, MM; Barros, LC; Bassanezi, RC, Stability of fuzzy dynamic systems, Int J Uncertain Fuzzyness Knowl Based Syst, 17, 69-83, (2009) · Zbl 1167.34020 · doi:10.1142/S0218488509005747
[44] Vasilova, M, Asymptotic behavior of a stochastic gilpin-ayala predator-prey system with time-dependent delay, Math Comput Model, 57, 764-781, (2013) · Zbl 1305.34122 · doi:10.1016/j.mcm.2012.09.002
[45] Wang, H; Morrison, W; Sing, A; Weiss, H, Modeling inverted biomass pyramids and refuges in ecosystems, Ecol Model, 220, 1376-1382, (2009) · doi:10.1016/j.ecolmodel.2009.03.005
[46] Yongzhen, P; Shuping, L; Changguo, L, Effect of delay on a predator-prey model with parasite infection, Nonlinear Dyn, 63, 311-321, (2011) · doi:10.1007/s11071-010-9805-4
[47] Zhang, J, Bifurcation analysis of a modified Holling-tanner predator-prey model with time delay, Appl Math Model, 36, 1219-1231, (2012) · Zbl 1243.34119 · doi:10.1016/j.apm.2011.07.071
[48] Zhang, X; Zhao, H, Bifurcation and optimal harvesting of a diffusive predator-prey system with delays and interval biological parameters, J Theor Biol, 363, 390-403, (2014) · Zbl 1317.92068 · doi:10.1016/j.jtbi.2014.08.031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.