×

Benchmarking of reactive transport codes for 2D simulations with mineral dissolution-precipitation reactions and feedback on transport parameters. (English) Zbl 1473.76058

Summary: Porosity changes due to mineral dissolution-precipitation reactions in porous media and the resulting impact on transport parameters influence the evolution of natural geological environments or engineered underground barrier systems. In the absence of long-term experimental studies, reactive transport codes are used to evaluate the long-term evolution of engineered barrier systems and waste disposal in the deep underground. Examples for such problems are the long-term fate of \(\mathrm{CO_2}\) in saline aquifers and mineral transformations that cause porosity changes at clay-concrete interfaces. For porosity clogging under a diffusive transport regime and for simple reaction networks, the accuracy of numerical codes can be verified against analytical solutions. For clogging problems with more complex chemical interactions and transport processes, numerical benchmarks are more suitable to assess model performance, the influence of thermodynamic data, and sensitivity to the reacting mineral phases. Such studies increase confidence in numerical model descriptions of more complex, engineered barrier systems. We propose a reactive transport benchmark, considering the advective-diffusive transport of solutes; the effect of liquid-phase density on liquid flow and advective transport; kinetically controlled dissolution-precipitation reactions causing porosity, permeability, and diffusivity changes; and the formation of a solid solution. We present and analyze the results of five participating reactive transport codes (i.e., \(\mathrm{CORE^{2D}}\), MIN3P-THCm, OpenGeoSys-GEM, PFLOTRAN, and TOUGHREACT). In all cases, good agreement of the results was obtained.

MSC:

76S05 Flows in porous media; filtration; seepage
86-04 Software, source code, etc. for problems pertaining to geophysics
86-08 Computational methods for problems pertaining to geophysics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Alt-Epping, P.; Diamond, LW; Häring, MO; Ladner, F.; Meier, DB, Prediction of water-rock interaction and porosity evolution in a granitoid-hosted enhanced geothermal system, using constraints from the 5 km Basel-1 well, Appl. Geochem., 38, 121-133 (2013) · doi:10.1016/j.apgeochem.2013.09.006
[2] Alt-Epping, P.; Waber, HN; Diamond, LW; Eichinger, L., Reactive transport modeling of the geothermal system at Bad Blumau, Austria: implications of the combined extraction of heat and CO2, Geothermics, 45, 18-30 (2013) · doi:10.1016/j.geothermics.2012.08.002
[3] Wanner, C.; Peiffer, L.; Sonnenthal, EL; Spycher, N.; Iovenitti, J.; Kennedy, BM, Reactive transport modeling of the Dixie Valley geothermal area: insights on flow and geothermometry, Geothermics, 51, 130-141 (2014) · doi:10.1016/j.geothermics.2013.12.003
[4] Diamond, LW; Alt-epping, P., Predictive modelling of mineral scaling, corrosion and the performance of solute geothermometers in a granitoid-hosted, enhanced geothermal system, Appl. Geochem., 51, 216-228 (2014) · doi:10.1016/j.apgeochem.2014.09.017
[5] De Windt, L.; Pellegrini, D.; van der Lee, J., Coupled modeling of cement/claystone interactions and radionuclide migration, J. Contam. Hydrol., 68, 3-4, 165-182 (2004) · doi:10.1016/S0169-7722(03)00148-7
[6] Gaucher, EC; Blanc, P., Cement/clay interaction—a review: experiments, natural analogues, and modelling, Waste Manag., 26, 7, 776-788 (2006) · doi:10.1016/j.wasman.2006.01.027
[7] De Windt, L.; Badredinne, R.; Lagneau, V., Long-term reactive transport modelling of stabilized/solidified waste: from dynamic leaching tests to disposal scenarios, J. Hazard. Mater., 139, 3, 529-536 (2007) · doi:10.1016/j.jhazmat.2006.03.045
[8] Kosakowski, G.; Berner, U., The evolution of clay rock/cement interfaces in a cementitious repository for low and intermediate level radioactive waste, Phys. Chem. Earth A/B/C, 64, 65-86 (2013) · doi:10.1016/j.pce.2013.01.003
[9] Berner, U.; Kulik, DA; Kosakowski, G., Geochemical impact of a low-pH cement liner on the near field of a repository for spent fuel and high-level radioactive waste, Phys. Chem. Earth, 46-56, 64 (2013)
[10] Gaus, I.; Azaroual, M.; Czernichowski-Lauriol, I., Reactive transport modelling of the impact of CO2 injection on the clayey cap rock at Sleipner (North Sea), Chem. Geol., 217, 3-4, 319-337 (2005) · doi:10.1016/j.chemgeo.2004.12.016
[11] Class, H.; Ebigbo, A.; Helmig, R.; Dahle, HK; Nordbotten, JM; Celia, MA; Aubigane, P.; Darcis, M.; Ennis-King, J.; Fan, Y.; Flemisch, B.; Gasda, SE; Jin, M.; Krug, S.; Labregere, D.; Beni, AN; Pawar, RJ; Sbai, A.; Thomas, SG; Trenty, L.; Wei, L., A benchmark study problems related to CO2 storage in geologic formations, Computat. Geosci., 13, 4, 409-434 (2009) · Zbl 1190.86011 · doi:10.1007/s10596-009-9146-x
[12] Bildstein, O.; Kervévan, C.; Lagneau, V.; Delaplace, P.; Crédoz, A.; Audigane, P.; Perfetti, E.; Jacquemet, N.; Jullien, M., Integrative modeling of caprock integrity in the context of CO2 storage: evolution of transport and geochemical properties and impact on performance and safety assessment, Oil Gas Sci. Technol. IFP, 65, 3, 485-502 (2010) · doi:10.2516/ogst/2010006
[13] Wanner, C.; Eggenberger, U.; Mäder, U., A chromate-contaminated site in southern Switzerland—part 2: reactive transport modeling to optimize remediation options, Appl. Geochem., 27, 3, 655-662 (2012) · doi:10.1016/j.apgeochem.2011.11.008
[14] Jamieson-Hanes, JH; Amos, RT; Blowes, DW, Reactive transport modeling of chromium isotope fractionation during cr(IV) reduction, Environ. Sci. Technol., 46, 24, 13311-13316 (2012) · doi:10.1021/es3046235
[15] Wanner, C.; Sonnenthal, EL, Assessing the control on the effective kinetic Cr isotope fractionation factor: a reactive transport modeling approach, Chem. Geol., 337-338, 88-98 (2013) · doi:10.1016/j.chemgeo.2012.11.008
[16] Lagneau, V.; van der Lee, J., Operator-splitting-based reactive transport models in strong feedback of porosity change: the contribution of analytical solutions for accuracy validation and estimator improvement, J. Contam. Hydrol., 112, 1-4, 118-129 (2010) · doi:10.1016/j.jconhyd.2009.11.005
[17] Hayek, M.; Kosakowski, G.; Churakov, S., Exact analytical solutions for a diffusion problem coupled with a precipitation-dissolution reaction and feedback of porosity change, Water Resour Res., 47, W07545 (2011) · doi:10.1029/2010WR010321
[18] Hayek, M.; Kosakowski, G.; Jakob, A.; Churakov, SV, A class of analytical solutions for multidimensional multispecies diffusive transport coupled with precipitation-dissolution reactions and porosity changes, Water Resour. Res., 48, W03525 (2012) · doi:10.1029/2011WR011663
[19] van der Lee, J.; De Windt, L.; Lagneau, V.; Goblet, P., Module oriented modeling of reactive transport with HYTEC, Comput. Geosci., 29, 3, 265-275 (2003) · doi:10.1016/S0098-3004(03)00004-9
[20] Lagneau, V.: Influence Des Processus Géochimiques Sur Le Transport En Milieu Poreux: Application Au Colmatage De BarriéRes De Confinement Potentielles Dans Un Stockage En Formation GéOlogique. PhD Thesis, Ecole des Mines de Paris (2000)
[21] Tartakovsky, AM; Redden, G.; Lichtner, PC; Scheibe, TD; Meakin, P., Mixing-induced precipitation: experimental study and multiscale numerical analysis, Water Resour. Res., 44, W06S04 (2008) · doi:10.1029/2006WR005725
[22] Katz, GE; Berkowitz, B.; Guadagnini, A.; Saaltink, MW, Experimental and modeling investigation of multicomponent reactive transport in porous media, J. Contam. Hydrol., 120-121, 27-44 (2011) · doi:10.1016/j.jconhyd.2009.11.002
[23] Steefel, CI; Appelo, CAJ; Arora, B.; Jacques, D.; Kalbacher, T.; Kolditz, O.; Lagneau, V.; Lichtner, PC; Mayer, KU; Meeussen, JCL; Molins, S.; Moulton, D.; Shao, H.; Šimu̇nek, J.; Spycher, NF; Yabusaki, SB; Yeh, GT, Reactive transport codes for subsurface environmental simulation, Computat. Geosci., 19, 445-478 (2015) · Zbl 1323.86002 · doi:10.1007/s10596-014-9443-x
[24] Steefel, CI; Yabusaki, SB; Mayer, KU, Reactive transport benchmarks for subsurface environmental simulation, Computat. Geosci., 19, 439-443 (2015) · doi:10.1007/s10596-015-9499-2
[25] Xie, M.; Mayer, KU; Claret, F.; Alt-Epping, P.; Jacques, D.; Steefel, C.; Chiaberge, C.; Šimůnek, J., Implementation and evaluation of permeability-porosity and tortuosity-porosity relationships linked to mineral dissolution-precipitation, Computat. Geosci., 19, 655-671 (2015) · doi:10.1007/s10596-014-9458-3
[26] Cochepin, B.; Trotignon, L.; Bildstein, O.; Steefel, CI; Lagneau, V.; van der Lee, J., Approaches to modelling coupled flow and reaction in a 2D cementation experiment, Adv. Water Resour., 31, 12, 1540-1551 (2008) · doi:10.1016/j.advwatres.2008.05.007
[27] Poonoosamy, J.; Kosakowski, G.; Van Loon, LR; Mäder, U., Dissolution-precipitation processes in tank experiments for testing numerical models for reactive transport calculations: experiment and modelling, J. Contam. Hydrol., 177-178, 1-17 (2015) · doi:10.1016/j.jconhyd.2015.02.007
[28] Poonoosamy, J.; Curti, E.; Kosakowski, G.; Grolimund, D.; Van Loon, LR; Mäder, U., Barite precipitation following celestite dissolution in a porous medium: a SEM/BSE and μ-XRD/XRF study, Geochim. Cosmochim. Acta, 182, 131-144 (2016) · doi:10.1016/j.gca.2016.03.011
[29] Prasianakis, NI; Curti, E.; Kosakowski, G.; Poonoosamy, J.; Churakov, SV, Deciphering pore-level precipitation mechanisms, Sci. Rep., 7, 13765 (2017) · doi:10.1038/s41598-017-14142-0
[30] Samper, J.; Xu, T.; Yang, C., A sequential partly iterative approach for multicomponent reactive transport with CORE2D, Computat. Geosci., 13, 301-316 (2009) · Zbl 1338.76066 · doi:10.1007/s10596-008-9119-5
[31] Samper, J., Yang, C., Zheng, L., Montenegro, L., Xu, T., Dai, Z., Zhang, G., Lu, C, Moreira, S: CORE^2D V4: a code for water flow, heat and solute transport, geochemical reactions, and microbial processes. In: Zhang F., Yeh G.T, Parker C., Shi X. (eds.) Chapter 7 of the Electronic Book Groundwater Reactive Transport Models, pp. 161-186. Bentham Science, ISBN 978-1-60805-029-1 (2011)
[32] Samper, J.; Lu, C.; Montenegro, L., Reactive transport model of interactions of corrosion products and bentonite, Phys. Chem. Earth, 33, S306-S316 (2008) · doi:10.1016/j.pce.2008.10.009
[33] Yang, C.; Samper, J.; Molinero, J., Inverse microbial and geochemical reactive transport models in porous media, Phys. Chem. Earth, 33, 12-13, 1026-1034 (2008) · doi:10.1016/j.pce.2008.05.016
[34] Zheng, L.; Samper, J., Coupled THMC model of FEBEX mock-up test, Phys. Chem. Earth, 33, 486-498 (2008) · doi:10.1016/j.pce.2008.10.023
[35] Zheng, L.; Samper, J.; Montenegro, L.; Fernández, AM, A coupled THMC model of a heating and hydration laboratory experiment in unsaturated compacted FEBEX bentonite, J. Hydrol., 386, 80-94 (2010) · doi:10.1016/j.jhydrol.2010.03.009
[36] Zheng, L.; Samper, J.; Montenegro, L., A coupled THC model of the FEBEX in situ test with bentonite swelling and chemical and thermal osmosis, J. Contam. Hydrol., 126, 45-60 (2011) · doi:10.1016/j.jconhyd.2011.06.003
[37] Samper, J., Mon, A., Montenegro, L.: A revisited thermal, hydrodynamic, chemical and mechanical model of compacted bentonite for the entire duration of the FEBEX in situ test. Applied Clay Sciences, doi:10.1016/j.clay.2018.02.019 (2018)
[38] Samper, J.; Zheng, L.; Montenegro, L.; Fernández, AM; Rivas, P., Coupled thermo-hydro-chemical models of compacted bentonite after FEBEX in situ test, Appl. Geochem., 23, 5, 1186-1201 (2008) · doi:10.1016/j.apgeochem.2007.11.010
[39] Samper, J.; Naves, A.; Montenegro, L.; Mon, A., Reactive transport modelling of the long-term interactions of corrosion products and compacted bentonite in a HLW repository in granite: uncertainties and relevance for performance assessment, Appl. Geochem., 67, 42-51 (2016) · doi:10.1016/j.apgeochem.2016.02.001
[40] Mon, A.; Samper, J.; Montenegro, L.; Naves, A.; Fernández, J., Long-term nonisothermal reactive transport model of compacted bentonite, concrete and corrosion products in a HLW repository in clay, J Cont. Hydrol., 197, 1-16 (2017) · doi:10.1016/j.jconhyd.2016.12.006
[41] Mayer, KU; Frind, EO; Blowes, DW, Multicomponent reactive transport modeling in variably saturated porous media using a generalized formulation for kinetically controlled reactions, Water Resour. Res., 38, 9, 1174 (2002) · doi:10.1029/2001WR000862
[42] Kulik, DA; Wagner, T.; Dmytrieva, SV; Kosakowski, G.; Hingerl, FF; Chudnenko, KV; Berner, U., GEM-Selektor geochemical modeling package: revised algorithm and GEMS3k numerical kernel for coupled simulation codes, Computat. Geosci., 17, 1, 1-24 (2013) · Zbl 1356.86022
[43] Shao, H.; Dmytrieva, SV; Kolditz, O.; Kulik, DA; Pfingsten, W.; Kosakowski, G., Modeling reactive transport in non-ideal aqueous-solid solution system, Appl. Geochem., 24, 7, 1287-1300 (2009) · doi:10.1016/j.apgeochem.2009.04.001
[44] Kosakowski, G.; Watanabe, N., Opengeosys-gem: a numerical tool for calculating geochemical and porosity changes in saturated and partially saturated media, Phys. Chem. Earth, 70-71, 138-149 (2014) · doi:10.1016/j.pce.2013.11.008
[45] Wagner, T.; Kulik, DA; Hingerl, FF; Dmytrieva, SV, GEM-Selektor geochemical modeling package: TSolMod C + + class library and data interface for multicomponent phase models, Can. Mineral., 50, 1173-1195 (2012) · doi:10.3749/canmin.50.5.1173
[46] Lichtner, P.C., Hammond, G.E., Lu, C., Karra, S., Bisht, G., Andre, B., Mills, R.T., Kumar, J., Frederick, J.M.: PFLOTRAN user manual, release 1.1, http://www.documentation.pflotran.org (2017)
[47] Xu, T.; Spycher, N.; Sonnenthal, E.; Zhang, G.; Zheng, L.; Pruess, K., TOUGHREACT Version 2.0: a simulator for subsurface reactive transport under non-isothermal multiphase flow conditions, Comput. Geosci., 37, 6, 763-774 (2011) · doi:10.1016/j.cageo.2010.10.007
[48] Pruess, K., Oldenburg, C. M., Moridis, G.: TOUGH2 User’s Guide, Version 2.0. Lawrence Berkeley National Laboratory Report LBNL-29400, Berkeley, California (1999)
[49] Batzle, M.; Wang, Z., Seismic properties of pore fluids, Geophysics, 57, 11, 1396-1408 (1992) · doi:10.1190/1.1443207
[50] Henderson, RD; Day-Lewis, FD; Abarca, E.; Harvey, CF; Karam, HN; Liu, L.; Lane, JWJr, Marine electrical resistivity imaging of submarine groundwater discharge: sensitivity analysis and application in Waquoit Bay, Massachusetts, USA, Hydrogeol. J., 18, 173-185 (2010) · doi:10.1007/s10040-009-0498-z
[51] Frind, EO, Simulation of long term transient density dependent transport in groundwater, Adv. Water Resour., 5, 73-98 (1982) · doi:10.1016/0309-1708(82)90049-5
[52] Voss, C. I.: SUTRA—A Finite-element Simulation Model for Saturated-unsaturated, Fluid-density-dependent Ground-water Flow with Energy Transport or Chemically-reactive Single-species Solute Transport, vol. 409. U.S. Geological Survey Water-Resources Investigations Report 84-4369 (1984)
[53] Kharaka, Y., Gunter, W., Aggarwal, P., Perkins, E., Debraal, J.: SOLMINEQ. 88: A Computer Program for Geochemical Modeling of Water-rock Interactions U.S. Geol. Surv. Water Resour. Invest. Rep. 88-4227 (1988)
[54] Guo, W., Langevin, C.: User’s Guide to SEAWAT: A Computer Program for Simulation of Three-dimensional Variable Density Ground-water Flow. U.S. Geologigical Survey Water-Resources Investigations Report 88-4227. https://pubs.usgs.gov/wri/1988/4227/report.pdf (1988) (2002)
[55] Simpson, MJ; Clement, TP, Improving the worthiness of the Henry problem as a benchmark for density-dependent groundwater flow models, Water Resour. Res., 40, W01504 (2004) · doi:10.1029/2003WR002199
[56] Kemp, NP; Thomas, DC; Atkinson, G.; Atkinson, BL, Density modeling for brines as a function of composition, temperature and pressure, SPE Prod. Eng., 4, 394-400 (1989) · doi:10.2118/16079-PA
[57] Monnin, C., Density calculation and concentration scale conversions for natural waters, Comput. Geosci., 20, 10, 1435-1445 (1994) · doi:10.1016/0098-3004(94)90103-1
[58] Bea, SA; Carrera, J.; Ayora, C.; Batlle, F., Pitzer algorithm: efficient implementation of Pitzer equations in geochemical and reactive transport models, Comput. Geosci., 36, 526-538 (2012) · doi:10.1016/j.cageo.2009.09.004
[59] Bea, S. A., Mayer, K. U., MacQuarrie, K. T. B.: Modelling Reactive Transport in Sedimentary Rock Environments—Phase II, MIN3P-THCm code enhancements and illustrative simulations for a glaciation scenario Technical report: NWMO TR-2011-13 (2011)
[60] Archie, G., The electrical resistivity log as an aid in determining some reservoir characteristics, Trans. AIME, 146, 54-62 (1942) · doi:10.2118/942054-G
[61] Bear, J., Dynamics of Fluids in Porous Media (1972), New York: Dover Publications Inc., New York · Zbl 1191.76001
[62] Helgeson, HC; Kirkham, DH; Flowers, GC, Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures: IV. Calculation of activity coefficients, osmotic coefficients, and apparent molal and standard and relative partial molal properties to 600 ∘C and 5 KB, Am. J. Sci., 281, 1249-1516 (1981) · doi:10.2475/ajs.281.10.1249
[63] Johnson, JW; Oelkers, EH; Helgeson, HC, SUPCRT92: A software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000 ∘C, Computat. Geosci., 18, 7, 899-947 (1992) · doi:10.1016/0098-3004(92)90029-Q
[64] Pitzer, KS, Thermodynamics of electrolytes. I. Theoretical basis and general equations, J. Phys. Chem., 77, 268-277 (1973) · doi:10.1021/j100621a026
[65] Pitzer, K. S.: Ion interaction approach: theory and data correlation. In: Pitzer, K. S. (ed.) Activity Coefficients in Electrolyte Solutions. CRC, Boca Raton (1991)
[66] Palandri, JL; Kharaka, YK, A Compilation of Rate Parameters of Water Mineral Interaction Kinetics for Application to Geochemical Modelling (2004), Menlo Park: US Geological Survey, Menlo Park
[67] Dove, PM; Czank, CA, Crystal chemical controls on the dissolution kinetics of the isostructural sulfates: celestite, anglesite, and barite, Geochim. Cosmochim. Acta, 56, 10, 4147-4156 (1995)
[68] Bruno, J., Bosbach, D., Kulik, D., Navrotsky, A.: Chemical Thermodynamics of Solid Solutions of Interest in Radioactive Waste Management: a State-Of-The Art Report Chemical Thermodynamics. In: Mompean, F.J., Illemassene, M., Perrone, J. (eds.) OECD, vol. 10. Issy-les-Moulineaux (2007)
[69] Wanner, C.; Druhan, JL; Amos, RT; Alt-Epping, P.; Steefel, CI, Benchmarking the simulation of Cr isotope fractionation, Computat. Geosci., 19, 497-521 (2015) · doi:10.1007/s10596-014-9436-9
[70] Hummel, W.; Berner, U.; Curti, E.; Pearson, FJ; Thoenen, T., Nagra/PSI Chemical Thermodynamic Data Base 01/01 (2002), Parkland: Universal, Parkland · doi:10.1524/ract.2002.90.9-11_2002.805
[71] Shock, EL; Helgeson, HC; Sverjensky, DA, Calculation of the thermodynamic and properties of aqueous species at high pressures temperatures: standard partial molal properties inorganic neutral species, Geochim. Cosmochim. Acta, 53, 9, 2157-2183 (1989) · doi:10.1016/0016-7037(89)90341-4
[72] Sverjensky, DA; Shock, EL; Helgeson, HC, Prediction of the thermodynamic properties of aqueous metal complexes to 1000 ∘C and 5 kb, Geochim. Cosmochim. Acta, 61, 1359-1412 (1997) · doi:10.1016/S0016-7037(97)00009-4
[73] Shock, E.; Sassani, DC; Willis, M.; Sverjensky, DA, Inorganic species in geologic fluids: correlations among standard molal thermodynamic properties of aqueous ions and hydroxide complexes, Geochim. Cosmochim. Acta, 61, 5, 907-950 (1997) · doi:10.1016/S0016-7037(96)00339-0
[74] Wagman, DD; Evans, WH; Parker, VB; Schumm, RH; Halow, I.; Bailey, SM; Churney, KL; Nuttall, RL, The NBS tables of chemical and thermodynamic properties. Selected values for inorganic and C1 and C2 organic substances in SI units, J. Phys. Chem. Ref. Data, 11, 2, 392 (1982)
[75] Kelley, KK, Contributions to the Data in Theoretical Metallurgy XIII: High Temperature Heat Content, Heat Capacities and Entropy Data for the Elements and Inorganic Compounds (1960), USA: U.S. Bureau of Mines Bulletin 584, USA
[76] Helgeson, HC; Delany, J.; Nesbitt, HW; Bird, DK, Summary and critique of the thermodynamic properties of rock-forming minerals, Am. J. Sci., 278A, 229 (1978)
[77] Chagneau, A.; Claret, F.; Enzmann, F.; Kersten, M.; Heck, S.; Madé, B.; Schäfer, T., Mineral precipitation-induced porosity reduction and its effect on transport parameters in diffusioncontrolled porous media, Geochem. Trans., 16, 13 (2015) · doi:10.1186/s12932-015-0027-z
[78] Noiriel, C.; Luquot, L.; Madé, B.; Raimbault, L.; Gouze, P.; Van der Lee, J., Changes in reactive surface area during limestone dissolution: an experimental and modelling study, Chem. Geol., 265, 1-2, 160-170 (2009) · doi:10.1016/j.chemgeo.2009.01.032
[79] Marty, NC; Tournassat, C.; Burmol, A.; Giffaut, E.; Gaucher, E., Influence of reaction kinetics and mesh refinement on the numerical modelling of concrete/clay interactions, J. Hydrol., 364, 58-72 (2009) · doi:10.1016/j.jhydrol.2008.10.013
[80] Prieto, M., Thermodynamics of solid solution-aqueous solution systems, Rev. Mineral. Geochem., 70, 47-85 (2009) · doi:10.2138/rmg.2009.70.2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.