×

Implementation of a transpiration velocity based cavitation model within a RANSE solver. (English) Zbl 1258.76164

Summary: A transpiration velocity based partial sheet cavitation model has previously been successfully validated when implemented within potential flow codes. The model is independent from any solver and permits to estimate the cavity length based on the subcavitating pressure distribution. This paper presents its implementation within a Reynolds averaged Navier-Stokes Equations solver. In order to compare the results of the implementation, experimental measurements on a 2D hydrofoil and potential flow code results are used. Several stages are covered. First the geometries of the cavitation sheets computed with the potential flow code are imposed with a slippery boundary condition on its surface into the RANSE simulation. The results obtained are in very good agreement with the previous validated results. In the second stage, the volume of fluid module is activated and water vapour is ejected from the foil surface and the transpiration velocities are computed with the potential flow code. The results are similar but the length of the cavitation closure is much shorter. Finally, the model is fully implemented within the RANSE solver. The transpiration velocities are computed using the model from the subcavitating pressure distribution. They are then applied on the foil surface as water vapour. The results are quasi-identical to the results obtained when the transpiration velocities are taken from the potential flow code. The paper proves the feasibility of modelling the cavitation sheet using transpiration velocities and VOF within a RANSE solver.

MSC:

76T10 Liquid-gas two-phase flows, bubbly flows
76F60 \(k\)-\(\varepsilon\) modeling in turbulence
76M99 Basic methods in fluid mechanics

Software:

RANSE; FLUENT
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] F. Salvatore, H. Streekwall, T. van Terwisga, Propeller cavitation modelling by CFD-results form the VIRTUE 2008 rome workshop, in: Proceedings of SMP’09 the First International Symposium on Marine Propulsors, Trondheim, Norway, 2008, pp. 362-371.; F. Salvatore, H. Streekwall, T. van Terwisga, Propeller cavitation modelling by CFD-results form the VIRTUE 2008 rome workshop, in: Proceedings of SMP’09 the First International Symposium on Marine Propulsors, Trondheim, Norway, 2008, pp. 362-371.
[2] Kunz, R.; Boger, D.; Stinebring, D.; Chyczewski, T.; Lindau, J.; Gibeling, H.; Venkateswaran, S.; Govindan, T., A preconditioned implicit method for two-phase flows with application to cavitation prediction, J. Comput. Fluids, 29, 849-875 (2000) · Zbl 0972.76075
[3] J. Sauer, G. Schnerr, Unsteady cavitating flow, a new cavitation model based on a modified front capturing method and bubble dynamics, in: Proceedings of ASME-FEDSM’00 the 4th Fluids Engineering Division Summer Meeting, Boston, 2000.; J. Sauer, G. Schnerr, Unsteady cavitating flow, a new cavitation model based on a modified front capturing method and bubble dynamics, in: Proceedings of ASME-FEDSM’00 the 4th Fluids Engineering Division Summer Meeting, Boston, 2000.
[4] Goncalves, E.; Fortes-Patella, R., Numerical simulation of cavitating flows with homogeneous models, J. Comput. Fluids, 38, 1682-1696 (2009) · Zbl 1177.76429
[5] Q. Qin, C. Song, R. Arndt, A virtual single-phase natural cavitation model and its applications to the CAV2003 hydrofoil, in: Proceedings of CAV2003 the Fifth International Symposium on Cavitation, Osaka, Japan, 2003.; Q. Qin, C. Song, R. Arndt, A virtual single-phase natural cavitation model and its applications to the CAV2003 hydrofoil, in: Proceedings of CAV2003 the Fifth International Symposium on Cavitation, Osaka, Japan, 2003.
[6] Liu, T.; Khoo, B.; Xie, W., Isentropic one-fluid modelling of unsteady cavitating flow, J. Comput. Phys., 201, 80-108 (2004) · Zbl 1153.76435
[7] Bilanceri, M.; Beux, F.; Salvetti, M., An implicit low-diffusive HLL scheme with complete time linearization: application to cavitating barotropic flows, J. Comput. Fluids, 39, 1990-2006 (2010) · Zbl 1245.76046
[8] Coutier-Delgosha, O.; Fortes-Patella, R.; Reboud, J., Evaluation of turbulence model influence on the numerical simulation of unsteady cavitation, J. Fluids Eng., 125, 38-45 (2003)
[9] J.H. Seo, S.K. Lele, Numerical investigation of cloud cavitation and cavitation noise on a hydrofoil section, in: CAV2009 the 7th International Symposium on Cavitation, Ann Arbor, Michigan, USA, 2009.; J.H. Seo, S.K. Lele, Numerical investigation of cloud cavitation and cavitation noise on a hydrofoil section, in: CAV2009 the 7th International Symposium on Cavitation, Ann Arbor, Michigan, USA, 2009.
[10] T. Huuva, Large eddy simulation of cavitating and non-cavitating flow, Ph.D. Thesis, Chalmers University of Technology, 2008.; T. Huuva, Large eddy simulation of cavitating and non-cavitating flow, Ph.D. Thesis, Chalmers University of Technology, 2008.
[11] Leroux, J.-B.; Coutier-Delgosha, O.; Astolfi, J.-A., A joint experimental and numerical study of mechanisms associated to instability of partial cavitation on two-dimensional hydrofoil, Phys. Fluids, 17, 052101 (2005) · Zbl 1187.76303
[12] Coutier-Delgosha, O.; Reboud, J.; Delannoy, Y., Numerical simulation of the unsteady behavior of cavitating flows, Internat. J. Numer. Methods Fluids, 42, 527-548 (2003) · Zbl 1143.76497
[13] F. Salvatore, C. Testa, L. Greco, Coupled hydrodynamics-hydroacoustics BEM modelling of marine propellers operating in a wakefield, in: Proceedings of SMP’09 the First International Symposium on Marine Propulsors, Trondheim, Norway, 2009, pp. 537-547.; F. Salvatore, C. Testa, L. Greco, Coupled hydrodynamics-hydroacoustics BEM modelling of marine propellers operating in a wakefield, in: Proceedings of SMP’09 the First International Symposium on Marine Propulsors, Trondheim, Norway, 2009, pp. 537-547.
[14] H. Shamsborhan, Développement d’une méthode de mesure de la célérité du son en écoulement diphasique-application aux écoulements cavitants, Ph.D. Thesis, ENSAM-ParisTech, 2009.; H. Shamsborhan, Développement d’une méthode de mesure de la célérité du son en écoulement diphasique-application aux écoulements cavitants, Ph.D. Thesis, ENSAM-ParisTech, 2009.
[15] Phoemsapthawee, S.; Leroux, J.-B.; Laurens, J.-M.; Deniset, F., A transpiration velocities based sheet cavitation model, Ship Technology Research, 56, 4, 161-176 (2009)
[16] J.-M. Laurens, J.-B. Leroux, B. Pengam, Sheet cavitation model implementation within a RANSE solver, in: Nutts 2010 Numerical Towing-Tank Symposium, Duisburg, Germany, 2010.; J.-M. Laurens, J.-B. Leroux, B. Pengam, Sheet cavitation model implementation within a RANSE solver, in: Nutts 2010 Numerical Towing-Tank Symposium, Duisburg, Germany, 2010.
[17] Lighthill, M., On displacement thickness, J. Fluid Mech., 4, 383-392 (1958) · Zbl 0081.40805
[18] S. Phoemsapthawee, Dévelopement d’un modéle de cavitation à poche sur hydrofoils et hélices en régimes transitoires, implémentation sur codes potentiels et validation expérimental, Ph.D. Thesis, Université Européenne de Bretagne, 2009.; S. Phoemsapthawee, Dévelopement d’un modéle de cavitation à poche sur hydrofoils et hélices en régimes transitoires, implémentation sur codes potentiels et validation expérimental, Ph.D. Thesis, Université Européenne de Bretagne, 2009.
[19] Kinnas, S.; Fine, N., A numerical nonlinear analysis of the flow around two- and three-dimensional partially cavitating hydrofoils, J. Fluid Mech., 254, 151-181 (1993) · Zbl 0800.76058
[20] J.-B. Leroux, J.-A. Astolfi, J.-Y. Billard, Étude expérimental des instationnarités et des instabilités des poches de cavitation, in: Actes des 9èmes Journées de l’Hydrodynamique, Poitiers, France, 2003.; J.-B. Leroux, J.-A. Astolfi, J.-Y. Billard, Étude expérimental des instationnarités et des instabilités des poches de cavitation, in: Actes des 9èmes Journées de l’Hydrodynamique, Poitiers, France, 2003.
[21] Fluent 6.3 user’s guide, 2006.; Fluent 6.3 user’s guide, 2006.
[22] Choudhury, D., Introduction to the Renormalization Group Method and Turbulence Modeling (1993), Fluent Inc., Technical Memorandum TM-107
[23] Shih, T.-H.; Liou, W.; Shabbir, A.; Yang, Z.; Zhu, J., A new \(k-\varepsilon\) eddy-viscosity model for high Reynolds number turbulent flows—model development and validation, J. Comput. Fluids, 24, 227-238 (1995) · Zbl 0825.76304
[24] S. Jessup, M. Donnelly, I. McClintock, S. Carpenter, Measurements of controllable pitch propeller blade loads under cavitating conditions, in: Proceedings of SMP’09 the First International Symposium on Marine Propulsors, Trondheim, Norway, 2009, pp. 36-43.; S. Jessup, M. Donnelly, I. McClintock, S. Carpenter, Measurements of controllable pitch propeller blade loads under cavitating conditions, in: Proceedings of SMP’09 the First International Symposium on Marine Propulsors, Trondheim, Norway, 2009, pp. 36-43.
[25] T. Kanemaru, J. Ando, Numerical analysis of steady and unsteady sheet cavitation on a marine propeller using a simple surface panel method “SQCM”, in: Proceedings of SMP’09 the First International Symposium on Marine Propulsors, Trondheim, Norway, 2009, pp. 372-379.; T. Kanemaru, J. Ando, Numerical analysis of steady and unsteady sheet cavitation on a marine propeller using a simple surface panel method “SQCM”, in: Proceedings of SMP’09 the First International Symposium on Marine Propulsors, Trondheim, Norway, 2009, pp. 372-379.
[26] Kato, K.; Dan, H.; Matsudaira, Y., Lock-in phenomenon of pitching hydrofoil with cavitation breakdown (unsteady fluid force characteristics and visualization of flow structure), J. Soc. Mech. Eng. Int. J. Ser. B, 49, 797-805 (2006)
[27] Carlton, J., Marine Propellers and Propulsion (2007), Elsevier
[28] Balhan, J., (Metingen aan Enige bij Scheepsschroeven Gebruikelijke Profielen in Vlakke Stroming met en Zonder Cavitatie. Metingen aan Enige bij Scheepsschroeven Gebruikelijke Profielen in Vlakke Stroming met en Zonder Cavitatie, Uitgave Publicatie, vol. 99 (1951), Nederlandsch Scheepsbouwkundig Proefstation te Wageningen)
[29] Briançon-Marjollet, L.; Merle, L., Modélisation de la cavitation, Revue Scientifique et Technique de la Défense, 43, 109-114 (1999), Bassin d’Essais des Carènes
[30] Hirschi, R.; Dupont, P.; Avellan, F.; Favre, J.; Guelich, J.; Parkinson, E., Centrifugal pump performance drop due to leading edge cavitation: numerical predictions compared with model tests, J. Fluids Eng., 120, 705-711 (1998)
[31] Y. Ait-Bouziad, F. Guennoun, M. Farhat, F. Avellan, Numerical simulation of leading edge cavitation, in: Proceedings of ASME—the 4th Fluids Engineering Division Summer Meeting, Honolulu, Hawaii, USA, 2003.; Y. Ait-Bouziad, F. Guennoun, M. Farhat, F. Avellan, Numerical simulation of leading edge cavitation, in: Proceedings of ASME—the 4th Fluids Engineering Division Summer Meeting, Honolulu, Hawaii, USA, 2003.
[32] Brackbill, J.; Kothe, D.; Zemath, C., A continuum method for modelling surface tension, J. Comput. Phys., 100, 335-354 (1992) · Zbl 0775.76110
[33] J.-B. Leroux, Étude expérimentale en tunnel hydrodynamique des instablitiés de la cavitation par poche sur hydrofoil par la mesure spatio-temporelle du champ de pression pariétal, Ph.D. Thesis, École Centrale de Nantes et Université de Nantes, 2003. Thèse de Doctorat.; J.-B. Leroux, Étude expérimentale en tunnel hydrodynamique des instablitiés de la cavitation par poche sur hydrofoil par la mesure spatio-temporelle du champ de pression pariétal, Ph.D. Thesis, École Centrale de Nantes et Université de Nantes, 2003. Thèse de Doctorat.
[34] Yoon, B.-S.; Semenov, Y.-A., Cavity detachment on a hydrofoil with the inclusion of surface tension effects, Eur. J. Mech. B Fluids, 30, 17-25 (2011) · Zbl 1222.76038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.