×

A high-precision single shooting method for solving hypersensitive optimal control problems. (English) Zbl 1427.49034

Summary: Solving hypersensitive optimal control problems is a long-standing challenge for decades in optimization engineering, mainly due to the possible nonexistence of the optimal solution to meet the required error tolerance under double-precision arithmetic and the hypersensitivity of the optimal solution with respect to the initial conditions. In this paper, a new high-precision single shooting method is presented to address the above two difficulties. Multiple-precision arithmetic and Taylor series method are introduced to provide the accurate optimal solution with arbitrary higher significant digits and arbitrary higher integral accuracy, respectively. Besides, a new modified bidirectional single shooting method is developed, which fully utilizes the three-segment structure of the hypersensitive optimal control problems and provides appropriate initial guess that is close to the optimal solutions. Numerical demonstrations in a typical hypersensitive optimal control problem are presented to illustrate the effectiveness of this new method, which indicates that the accurate optimal solution of this challenging problem can be easily solved by this simple single shooting method within several iterations.

MSC:

49M20 Numerical methods of relaxation type
65K10 Numerical optimization and variational techniques
49M37 Numerical methods based on nonlinear programming

Software:

GPOPS; CUDA; advanpix; SOCS; OTIS
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Rao, A. V.; Mease, K. D., Dichotomic basis approach to solving hyper-sensitive optimal control problems, Automatica, 35, 4, 633-642 (1999) · Zbl 1049.93533 · doi:10.1016/S0005-1098(98)00161-7
[2] Rao, A. V., Riccati dichotomic basis method for solving hypersensitive optimal control problems, Journal of Guidance, Control, and Dynamics, 26, 1, 185-189 (2003) · doi:10.2514/2.5035
[3] Zhao, Y.; Tsiotras, P., Density functions for mesh refinement in numerical optimal control, Journal of Guidance, Control, and Dynamics, 34, 1, 271-277 (2011) · doi:10.2514/1.45852
[4] Darby, C. L.; Hager, W. W.; Rao, A. V., An hp-adaptive pseudospectral method for solving optimal control problems, Optimal Control Applications and Methods, 32, 4, 476-502 (2011) · Zbl 1266.49066 · doi:10.1002/oca.957
[5] Peng, H.; Gao, Q.; Wu, Z.; Zhong, W., Symplectic algorithms with mesh refinement for a hypersensitive optimal control problem, International Journal of Computer Mathematics, 92, 11, 2273-2289 (2015) · Zbl 1337.49054 · doi:10.1080/00207160.2014.979810
[6] Aykutlug, E.; Topcu, U.; Mease, K. D., Manifold-following approximate solution of completely hypersensitive optimal control problems, Journal of Optimization Theory and Applications, 170, 1, 220-242 (2016) · Zbl 1346.49040 · doi:10.1007/s10957-016-0868-3
[7] Betts, J. T., Practical Methods for Optimal Control and Estimation Using Nonlinear Programming (2010), Society for Industrial and Applied Mathematics · Zbl 1189.49001 · doi:10.1137/1.9780898718577
[8] Gerdts, M., Direct shooting method for the numerical solution of higher-index DAE optimal control problems, Journal of Optimization Theory and Applications, 117, 2, 267-294 (2003) · Zbl 1033.65046 · doi:10.1023/A:1023679622905
[9] Luenberger, D. G.; Ye, Y., Linear and Nonlinear Programming. Linear and Nonlinear Programming, International Series in Operations Research & Management Science, 116 (2008), New York, NY, USA: Springer, New York, NY, USA · Zbl 1207.90003
[10] Liu, C.; Gong, Z.; Teo, K. L., Robust parameter estimation for nonlinear multistage time-delay systems with noisy measurement data, Applied Mathematical Modelling, 53, 353-368 (2018) · Zbl 1480.93417 · doi:10.1016/j.apm.2017.09.007
[11] Coverstone-Carroll, V.; Williams, S. N., Optimal low thrust trajectories using differential inclusion concepts, Journal of the Astronautical Sciences, 42, 4, 379-393 (1994)
[12] Mehrotra, S., On the implementation of a primal-dual interior point method, SIAM Journal on Optimization, 2, 4, 575-601 (1992) · Zbl 0773.90047 · doi:10.1137/0802028
[13] Herman, A. L.; Conway, B. A., Direct optimization using collocation based on high-order Gauss-Lobatto quadrature rules, Journal of Guidance, Control, and Dynamics, 19, 3, 592-599 (1996) · Zbl 0866.65044 · doi:10.2514/3.21662
[14] Hargraves, C. R.; Paris, S. W., Direct trajectory optimization using nonlinear programming and collocation, Journal of Guidance, Control, and Dynamics, 10, 4, 338-342 (1987) · Zbl 0634.65052 · doi:10.2514/3.20223
[15] Ross, I. M.; Fahroo, F., Pseudospectral knotting methods for solving optimal control problems, Journal of Guidance, Control, and Dynamics, 27, 3, 397-405 (2004) · doi:10.2514/1.3426
[16] Huntington, G. T., Advancement and Analysis of a Gauss Pseudospectral Transcription for Optimal Control Problems [Ph.D. thesis] (2007), University of Florida
[17] Topputo, F.; Zhang, C., Survey of direct transcription for low-thrust space trajectory optimization with applications, Abstract and Applied Analysis (2014) · Zbl 1474.49081 · doi:10.1155/2014/851720
[18] Lin, Q.; Loxton, R.; Teo, K. L., The control parameterization method for nonlinear optimal control: a survey, Journal of Industrial and Management Optimization, 10, 1, 275-309 (2014) · Zbl 1276.49025 · doi:10.3934/jimo.2014.10.275
[19] Loxton, R.; Lin, Q.; Rehbock, V.; Teo, K., Control parameterization for optimal control problems with continuous inequality constraints: new convergence results, Numerical Algebra, Control and Optimization, 2, 3, 571-599 (2012) · Zbl 1256.65065 · doi:10.3934/naco.2012.2.571
[20] Goh, C. J.; Teo, K. L., Control parametrization: a unified approach to optimal control problems with general constraints, Automatica, 24, 1, 3-18 (1988) · Zbl 0637.49017 · doi:10.1016/0005-1098(88)90003-9
[21] Patterson, M. A.; Rao, A. V., GPOPS-II: a MATLAB software for solving multiple-phase optimal control problems using hp-adaptive gaussian quadrature collocation methods and sparse nonlinear programming, ACM Transactions on Mathematical Software, 41, 1, 1-37 (2014) · Zbl 1369.65201 · doi:10.1145/2558904
[22] Bryson, A. E.; Ho, Y. C., Applied Optimal Control: Optimization, Estimation, And Control (1975), Levittown, PA, USA: Taylor & Francis, Levittown, PA, USA
[23] Rao, A. V.; Mease, K. D., Eigenvector approximate dichotomic basis method for solving hyper-sensitive optimal control problems, Optimal Control Applications and Methods, 21, 1, 1-19 (2000) · Zbl 1069.49503 · doi:10.1002/(SICI)1099-1514(200001/02)21:1<1::AID-OCA646>3.0.CO;2-V
[24] Rao, A. V., Application of a dichotomic basis method to performance optimization of supersonic aircraft, Journal of Guidance, Control, and Dynamics, 23, 3, 570-573 (2000) · doi:10.2514/2.4570
[25] Khanna, G., High-precision numerical simulations on a CUDA GPU: Kerr black hole tails, Journal of Scientific Computing, 56, 2, 366-380 (2013) · Zbl 1273.83103 · doi:10.1007/s10915-012-9679-3
[26] Advanpix, Multiprecision Computing Toolbox for MATLAB, http://www.advanpix.com
[27] Ascher, U. M.; Mattheij, R. M.; Russell, R. D., Numerical Solution of Boundary Value Problems for Ordinary Differential Equations (1988), Philadelphia, Pa, USA: SIAM, Philadelphia, Pa, USA · Zbl 0671.65063 · doi:10.1137/1.9781611971231
[28] Corliss, G.; Chang, Y. F., Solving ordinary differential equations using Taylor series, ACM Transactions on Mathematical Software, 8, 2, 114-144 (1982) · Zbl 0503.65046 · doi:10.1145/355993.355995
[29] Barrio, R.; Blesa, F.; Lara, M., VSVO formulation of the Taylor method for the numerical solution of ODEs, Computers & Mathematics with Applications, 50, 1-2, 93-111 (2005) · Zbl 1085.65056 · doi:10.1016/j.camwa.2005.02.010
[30] Barrio, R., Performance of the Taylor series method for ODEs/DAEs, Applied Mathematics and Computation, 163, 2, 525-545 (2005) · Zbl 1067.65063 · doi:10.1016/j.amc.2004.02.015
[31] de Groen, P. P.; Hermann, M., Bidirectional shooting: a strategy to improve the reliability of shooting methods for ODE, SIAM Journal on Scientific Computing, 5, 2, 360-369 (1984) · Zbl 0561.65060 · doi:10.1137/0905027
[32] Ascher, U. M.; Mattheij, R. M.; Russell, R., Numerical Solution of Boundary Value Problems for Ordinary Differential Equations (1995), Society for Industrial and Applied Mathematics · Zbl 0843.65054 · doi:10.1137/1.9781611971231
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.