×

The dynamics of miscible viscous fingering from onset to shutdown. (English) Zbl 1419.76618

Summary: We examine the full ‘life cycle’ of miscible viscous fingering from onset to shutdown with the aid of high-resolution numerical simulations. We study the injection of one fluid into a planar two-dimensional porous medium containing another, more viscous fluid. We find that the dynamics are distinguished by three regimes: an early-time linearly unstable regime, an intermediate-time nonlinear regime and a late-time single-finger exchange-flow regime. In the first regime, the flow can be linearly unstable to perturbations that grow exponentially. We identify, using linear stability theory and numerical simulations, a critical Péclet number below which the flow remains stable for all times. In the second regime, the flow is dominated by the nonlinear coalescence of fingers which form a mixing zone in which we observe that the convective mixing rate, characterized by a convective Nusselt number, exhibits power-law growth. In this second regime we derive a model for the transversely averaged concentration which shows good agreement with our numerical experiments and extends previous empirical models. Finally, we identify a new final exchange-flow regime in which a pair of counter-propagating diffusive fingers slow exponentially. We derive an analytic solution for this single-finger state which agrees well with numerical simulations. We demonstrate that the flow always evolves to this regime, irrespective of the viscosity ratio and Péclet number, in contrast to previous suggestions.

MSC:

76S05 Flows in porous media; filtration; seepage
76E17 Interfacial stability and instability in hydrodynamic stability

Software:

MUDPACK; MUDPACK-2
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Adams, J. C.1999 Mudpack: Multigrid software for elliptic partial differential equations. Computational information systems laboratory. https://www2.cisl.ucar.edu/resources/legacy/mudpack.
[2] Almarcha, C.; Trevelyan, P. M. J.; Grosfils, P.; De Wit, A., Chemically driven hydrodynamic instabilities, Phys. Rev. Lett., 104, (2010) · doi:10.1103/PhysRevLett.104.044501
[3] Blackwell, R. J.; Rayne, J. R.; Terry, W. M., Factors influencing the efficiency of miscible displacements, Petrol. Trans. AIME, 216, 1-8, (1959)
[4] Boait, F. C.; White, N. J.; Bickle, M. J.; Chadwick, R. A.; Neufeld, J. A.; Huppert, H. E., Spatial and temporal evolution of injected CO2 at the Sleipner field, North Sea, J. Geophys. Res., 117, (2012)
[5] Booth, R. J. S., On the growth of the mixing zone in miscible viscous fingering, J. Fluid Mech., 655, 527-539, (2010) · Zbl 1197.76054 · doi:10.1017/S0022112010001734
[6] Chui, J. Y. Y.; De Anna, P.; Juanes, R., Interface evolution during radial miscible viscous fingering, Phys. Rev. E, 92, (2015) · doi:10.1103/PhysRevE.92.041003
[7] De Wit, A.; Homsy, G. M., Viscous fingering in periodically heterogeneous porous media. Part I. Formulation and linear instability, J. Chem. Phys., 107, 22, 9609-9618, (1997) · doi:10.1063/1.475258
[8] De Wit, A.; Homsy, G. M., Viscous fingering in periodically heterogeneous porous media. Part II. Numerical simulations, J. Chem. Phys., 107, 22, 9619-9628, (1997) · doi:10.1063/1.475259
[9] Hewitt, D. R.; Neufeld, J. A.; Lister, J. R., Convective shutdown in a porous medium at high Rayleigh number, J. Fluid Mech., 719, 551-586, (2013) · Zbl 1284.76344 · doi:10.1017/jfm.2013.23
[10] Hill, S., Channelling in packed columns, Chem. Engng Sci., 1, 247-253, (1952) · doi:10.1016/0009-2509(52)87017-4
[11] Huppert, H. E.; Neufeld, J. A., The fluid mechanics of carbon dioxide sequestration, Annu. Rev. Fluid Mech., 46, 255-272, (2014) · Zbl 1297.76184 · doi:10.1146/annurev-fluid-011212-140627
[12] Islam, M. N.; Azaiez, J., Fully implicit finite difference pseudo-spectral method for simulating high mobility-ratio miscible displacements, Intl J. Numer. Meth. Fluids, 1, 161-183, (2005) · Zbl 1065.76153 · doi:10.1002/fld.803
[13] Jha, B.; Cueto-Felgueroso, L.; Juanes, R., Fluid mixing from viscous fingering, Phys. Rev. Lett., 106, 19, (2011) · doi:10.1103/PhysRevLett.106.194502
[14] Jha, B.; Cueto-Felgueroso, L.; Juanes, R., Quantifying mixing in viscously unstable porous media flows, Phys. Rev. E, 84, (2011)
[15] Van Keken, P. E.; Hauri, E. H.; Ballentine, C. J., Mantle mixing: the generation, preservation, and destruction of chemical heterogeneity, Annu. Rev. Earth Planet. Sci., 30, 493-525, (2002) · doi:10.1146/annurev.earth.30.091201.141236
[16] Koval, E. J., A method for predicting the performance of unstable miscible displacement in heterogeneous media, Soc. Petrol. Engng J., 3, 2, 145-154, (1963) · doi:10.2118/450-PA
[17] Lajeunesse, E.; Martin, J.; Rakotomalala, N.; Salin, D.; Yortsos, Y. C., Miscible displacement in a Hele-Shaw cell at high rates, J. Fluid Mech., 398, 299-319, (1999) · Zbl 0942.76508 · doi:10.1017/S0022112099006357
[18] Lake, L. W., Enhanced Oil Recovery, (1989), Prentice Hall
[19] Lele, S. K., Compact finite difference schemes with spectral-like resolution, J. Comput. Phys., 103, 1, 16-42, (1992) · Zbl 0759.65006 · doi:10.1016/0021-9991(92)90324-R
[20] Loggia, D.; Rakotomalala, N.; Salin, D.; Yortsos, Y. C., The effect of mobility gradients on viscous instabilities in miscible flows in porous media, Phys. Fluids, 11, 3, 740-742, (1998) · Zbl 1147.76447 · doi:10.1063/1.869943
[21] Malhotra, S.; Sharma, M. M.; Lehman, E. R., Experimental study of the growth of mixing zone in miscible viscous fingering, Phys. Fluids, 27, (2015) · doi:10.1063/1.4905581
[22] Mccloud, K. V.; Maher, J. V., Experimental perturbations to Saffman-Taylor flow, Phys. Rep., 260, 139-185, (1995) · doi:10.1016/0370-1573(95)91133-U
[23] Neufeld, J. A.; Hesse, M. A.; Riaz, A.; Hallworth, M. A.; Tchelepi, H. A.; Huppert, H. E., Convective dissolution of carbon dioxide in saline aquifers, Geophys. Res. Lett., 37, 22, (2010) · doi:10.1029/2010GL044728
[24] Nicolaides, C.; Jha, B.; Cueto-Felgueroso, L.; Juanes, R., Impact of viscous fingering and permeability heterogeneity on fluid mixing in porous media, Water Resour. Res., 51, 4, 2634-2647, (2015) · doi:10.1002/2014WR015811
[25] Paterson, L., Fingering with miscible fluids in a Hele-Shaw cell, Phys. Fluids, 28, 1, 26-30, (1985) · doi:10.1063/1.865195
[26] Pramanik, S.; Mishra, M., Effect of Péclet number on miscible rectilinear displacement in a Hele-Shaw cell, Phys. Rev. E, 91, (2015)
[27] Pramanik, S.; Mishra, M., Nonlinear simulations of miscible viscous fingering with gradient stresses in porous media, Chem. Engng Sci., 122, 523-532, (2015) · doi:10.1016/j.ces.2014.10.019
[28] Ruith, M.; Meiburg, E., Miscible rectilinear displacements with gravity override. Part 1. Homogeneous porous medium, J. Fluid Mech., 420, 225-257, (2000) · Zbl 0995.76090 · doi:10.1017/S0022112000001543
[29] Saffman, P. G.; Taylor, G., The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid, Proc. R. Soc. Lond. A, 245, 1242, 312-329, (1958) · Zbl 0086.41603 · doi:10.1098/rspa.1958.0085
[30] Stone, H. A.; Stroock, A. D.; Ajdari, A., Engineering flows in small devices: microfluidics toward a lab-on-a-chip, Annu. Rev. Fluid Mech., 36, 381-411, (2004) · Zbl 1076.76076 · doi:10.1146/annurev.fluid.36.050802.122124
[31] Tan, C. T.; Homsy, G. M., Stability of miscible displacements in porous media: rectilinear flow, Phys. Fluids, 29, 11, 3549-3556, (1986) · Zbl 0608.76087 · doi:10.1063/1.865832
[32] Tan, C. T.; Homsy, G. M., Stability of miscible displacements in porous media: radial source flow, Phy. Fluids, 30, 5, 1239-1245, (1987) · Zbl 0623.76035 · doi:10.1063/1.866289
[33] Tan, C. T.; Homsy, G. M., Simulation of nonlinear viscous fingering in miscible displacement, Phys. Fluids, 31, 6, 1330-1338, (1988) · doi:10.1063/1.866726
[34] Tan, C. T.; Homsy, G. M., Viscous fingering with permeability heterogeneity, Phys. Fluids, 4, 6, 1099-1101, (1992) · doi:10.1063/1.858227
[35] Yang, Z.; Yortsos, Y. C., Asymptotic solutions of miscible displacements in geometries of large aspect ratio, Phys. Fluids, 9, 286-298, (1997) · doi:10.1063/1.869149
[36] Yortsos, Y. C.; Salin, D., On the selection principle for viscous fingering in porous media, J. Fluid Mech., 557, 225-236, (2006) · Zbl 1094.76021 · doi:10.1017/S0022112006009761
[37] Zhou, Q., Temporal evolution and scaling of mixing in two-dimensional Rayleigh-Taylor turbulence, Phys. Fluids, 25, (2013) · doi:10.1063/1.4795407
[38] Zimmerman, W. B.; Homsy, G. M., Nonlinear viscous fingering in miscible displacement with anisotropic dispersion, Phys. Fluids, 3, 8, 1859-1872, (1991) · Zbl 0745.76090 · doi:10.1063/1.857916
[39] Zimmerman, W. B.; Homsy, G. M., Viscous fingering in miscible displacements: unification of effects of viscosity contrast, anisotropic dispersion, and velocity dependence of dispersion on nonlinear finger propagation, Phys. Fluids, 4, 11, 2348-2359, (1992) · doi:10.1063/1.858476
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.