×

Profit optimization of cattle growth with variable prices. (English) Zbl 1491.92140

Summary: We apply a class of stochastic differential equations to model the growth of individual animals in randomly fluctuating environments using real weight data of males of the Mertolengo cattle breed. The use of these more realistic models can help farmers to optimize their profit. To this end we obtain the probability distribution, the first two moments and others quantities of interest of the profit obtained by raising and selling an animal under the more general, and more realistic, situation where the raising costs and the price per kg paid to the farmers depends on the animal’s age and weight category. We also present sensitivity results on how the expected profit and the optimal selling age vary with small changes on the estimates of the model parameters. We conclude that farmers are selling the animals a little earlier than the optimal selling age, which results in a lower profit per animal. The sensitivity analysis of the parameters shows that small changes on the parameters result in very small effects on the optimal profit and negligible effects on the optimal selling age.

MSC:

92D99 Genetics and population dynamics
91B70 Stochastic models in economics
60H30 Applications of stochastic analysis (to PDEs, etc.)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Braumann CA (2019) Introduction to stochastic differential equations with applications to modelling in Biology and Finance. John Wiley & Sons · Zbl 1425.60001
[2] Darmani Kuhi, H.; Porter, T.; Lopez, S.; Kebreab, E.; Strathe, AB; Dumas, A.; Dijkstra, J.; France, J., A review of mathematical functions for the analysis of growth in poultry, Worlds Poult Sci J, 66, 2, 227-240 (2010) · doi:10.1017/S0043933910000280
[3] Filipe PA, Braumann CA (2008) Modelling individual animal growth in random environments. In: Proceedings of the 23rd International Workshop on Statistical Modelling, Eilers, P.H.C. (Ed.), Utrecht, pp 232-237
[4] Filipe, PA; Braumann, CA; Brites, NM; Roquete, CJ, Modelling animal growth in random environments: an application using nonparametric estimation, Biom J, 52, 5, 653-666 (2010) · Zbl 1203.62138 · doi:10.1002/bimj.200900273
[5] Filipe, PA; Braumann, CA; Carlos, C., Profit optimization for cattle growing in a randomly fluctuating environment, Optimization: A Journal of Mathematical Programming and Operations Research, 64, 6, 1393-1407 (2015) · Zbl 1326.60084 · doi:10.1080/02331934.2014.974598
[6] Filipe PA, Braumann CA, Roquete CJ (2007) Modelos de crescimento de animais em ambiente aleatório. In: Ferrão ME, Nunes C, Braumann CA (eds) Estatística Ciência Interdisciplinar, Actas do XIV Congresso Anual da Sociedade Portuguesa de Estatística. Edições SPE, pp 401-410
[7] Filipe, PA; Braumann, CA; Roquete, CJ, Multiphasic individual growth models in random environments, Methodol Comput Appl Probab, 14, 1, 49-56 (2012) · Zbl 1245.60056 · doi:10.1007/s11009-010-9172-0
[8] Garcia, O., A stochastic differential equation model for the height of forest stands, Biometrics, 39, 1059-1072 (1983) · Zbl 0535.62089 · doi:10.2307/2531339
[9] Ghosh, H.; Prajneshu, Optimum fitting of Richards growth model in random environment, J Stat Theory Pract, 13, 1, 6 (2019) · Zbl 1435.62386 · doi:10.1007/s42519-018-0004-9
[10] Goldsworthy, P.; Colegrove, MP, Growth and yield of highland maize in Mexico, J Agric Sci, 83, 213-221 (1974) · doi:10.1017/S0021859600051881
[11] Gompertz, B., On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies, Philos Trans R Soc Lond, 115, 515-585 (1825)
[12] Kebreab, E.; Schuli-Zeuthen, M.; López, S.; Dias, RS; De Lange, CFM; France, J., Comparative evaluation of mathematical functions to describe growth and efficiency of phosphorus utilization in growing pigs, J Anim Sci, 85, 2498-2507 (2007) · doi:10.2527/jas.2006-738
[13] Kozusko, F.; Bajzer, Z., Combining Gompertzian growth and cell population dynamics, Math Biosci, 185, 153-167 (2003) · Zbl 1021.92012 · doi:10.1016/S0025-5564(03)00094-4
[14] Ohnishi, S.; Akamine, T., Extension of von Bertalanffy growth model incorporating growth patterns of soft and hard tissues in bivalve molluscs, Fish Sci, 72, 4, 787-795 (2006) · doi:10.1111/j.1444-2906.2006.01219.x
[15] Prajneshu; Ghosh, H., Stochastic differential equation models and their applications to agriculture: an overview, Statistics and Applications, 17, 1, 73-83 (2019)
[16] Qiming, Lv; Pitchford, J., Stochastic von Bertalanffy models, with applications to fish recruitment, J Theor Biol, 244, 640-655 (2007) · Zbl 1450.92071 · doi:10.1016/j.jtbi.2006.09.009
[17] Rennolls, K., Forest height growth modelling, For Ecol Manag, 71, 217-225 (1995) · doi:10.1016/0378-1127(94)06102-O
[18] Richards, F., A flexible growth function for empirical use, J Exp Bot, 10, 290-300 (1959) · doi:10.1093/jxb/10.2.290
[19] Russo, T.; Baldi, P.; Parisi, A.; Magnifico, G.; Mariani, S.; Cataudella, S., Lévy processes and stochastic von Bertalanffy models of growth, with application to fish population analysis, J Theor Biol, 258, 4, 521-529 (2009) · Zbl 1402.92366 · doi:10.1016/j.jtbi.2009.01.033
[20] Sengül, T.; Kiraz, S., Non-Linear models for growth curves in large white turkeys, Turk J Vet Anim Sci, 29, 331-337 (2005)
[21] Valentine, H., Tree-growth models: derivations employing the pipe-model theory, J Theor Biol, 117, 579-585 (1985) · doi:10.1016/S0022-5193(85)80239-3
[22] Vasicek, O., An equilibrium characterization of the term structure, J Financ Econ, 5, 177-188 (1977) · Zbl 1372.91113 · doi:10.1016/0304-405X(77)90016-2
[23] Verhulst, PF, Notice sur la loi que la population poursuit dans son accroissement, Correspondance Mathématique et Physique, 10, 113-121 (1838)
[24] von Bertalanffy, L., Quantitative laws in metabolism and growth, Q Rev Biol, 34, 786-795 (1957)
[25] Yoshioka, H.; Yaegashi, Y.; Yoshioka, Y.; Tsugihashi, K., A short note on analysis and application of a stochastic open-ended logistic growth model, Lett Biomath, 6, 1, 67-77 (2019) · doi:10.30707/LiB6.1Yoshioka
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.