×

zbMATH — the first resource for mathematics

Ascoli-Arzela-theory based on continuous convergence in an (almost) non-Hausdorff setting 2. (English) Zbl 07357699
MSC:
54C35 Function spaces in general topology
54A20 Convergence in general topology (sequences, filters, limits, convergence spaces, nets, etc.)
54D30 Compactness
46A20 Duality theory for topological vector spaces
54C25 Embedding
PDF BibTeX XML Cite
Full Text: Link
References:
[1] Bartsch, R., Dencker, P., andPoppe, H. :Ascoli-Arzela -Theory based on continuous convergence in an (almost) non-Hausdorff setting.Categorial Topology, E. Guli, ed., Kluwer Academic Publisher, Dordrecht 1996, 221 - 240
[2] Bartsch, R., andPoppe, H. :An abstract algebraic-topological approach to the notions of a first and a second dual space, I.In: Caserta, Dipartismento di Matematica, Seconda Universita di Napoli; Rome: Aracne 2009
[3] Bartsch, R., andPoppe, H. :Compactness in functionspaces with splitting topologies. Rostocker Math. Kolloq.66, 2011, 69 - 73
[4] Bartsch, R., andPoppe, H. :An abstract algebraic-topological approach to the notions of a first and a second dual space, II.Int. J. Pure, Appl. Math.84, 2013, 651 - 667
[5] Bartsch, R., andPoppe, H. :An abstract algebraic-topological approach to the notions of a first and a second dual space, III.N. Z. J. Math.46, 2016, 1 - 8 · Zbl 1361.46004
[6] Beer, G. :Topologies on closed and closed convex sets.KLuwer Academic Publishers 1993 · Zbl 0792.54008
[7] Bourbaki, N. :General Topology, Part 2.Addison-Wesley 1966 · Zbl 0145.19302
[8] Di Maio, G, Meccariello, E., andNaimpally, S. :Duality in function spaces. Medterr. J. Math.3, 2006, 189 - 204 · Zbl 1121.54030
[9] Isiwata, T. :On strictly continuous convergence of continuous functions.Proc. Japan Acad.34, 1958, 82 - 86 · Zbl 0082.16001
[10] Kelley, J. :Genral Topology.Van Nostrand 1955
[11] Mynard, F. :A convergence-theoretic Viewpoint on the Arzela-Ascoli theorem.Real. Anal. Exch.38, No. 2, 2013, 431 - 444 · Zbl 1295.54004
[12] Naimpally, S. :Proximity Approach to Problems in Topology and Analysis.Oldenburg Verlag M√ľnchen 2009 · Zbl 1185.54001
[13] Poppe, H. :Charakterisierung der Kompaktheit eines topologischen RaumesXdurch Konvergenz inC(X).Math. Nachrichten29, 1965, 205 - 216 · Zbl 0129.37802
[14] Poppe, H. :Compactness Criterion for Hausdorff admissible (jointly continuous) convergence structures in function spaces, General Topology and its Relation to Modern Analysis and Algebra III.Proceedings of the Third Prague Topological Symposium, 1971, 353 - 357
[15] Poppe, H. :Compactness in General Function Spaces.Deutscher Verlag der Wissenschaften, Berlin 1974 · Zbl 0291.54012
[16] Poppe, H. :On locally defined topological notions, Quest. Answers.Gen. Topology 13(1), 1995, 39 - 53 · Zbl 0822.54002
[17] Zeuch, M. :Untersuchungen zur stark stetigen Konvergenz
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.