×

zbMATH — the first resource for mathematics

Transformations on density operators preserving generalised entropy of a convex combination. (English) Zbl 1393.15037
Summary: We aim to characterise those transformations on the set of density operators (which are the mathematical representatives of the states in quantum information theory) that preserve a so-called generalised entropy of one fixed convex combination of operators. The characterisation strengthens a recent result of M. Karder and T. Petek [Linear Algebra Appl. 532, 86–98 (2017; Zbl 1370.15028)] where the preservation of the same quantity was assumed for all convex combinations.
MSC:
15A86 Linear preserver problems
15A60 Norms of matrices, numerical range, applications of functional analysis to matrix theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Barvínek, J. and Hamhalter, J., ‘Linear algebraic proof of Wigner theorem and its consequences’, Math. Slovaca67 (2017), 371-386. · Zbl 1424.81005
[2] Chen, H. Y., Gehér, Gy. P., Liu, C. N., Molnár, L., Virosztek, D. and Wong, N. C., ‘Maps on positive definite operators preserving the quantum 𝜒_𝛼2 -divergence’, Lett. Math. Phys.107 (2017), 2267-2290. doi:10.1007/s11005-017-0989-0 · Zbl 06814930
[3] Drnovšek, R., The von Neumann entropy and unitary equivalence of quantum states, Linear Multilinear Algebra, 61, 1391-1393, (2013) · Zbl 1321.15013
[4] Gaál, M. and Molnár, L., ‘Transformations on density operators and on positive definite operators preserving the quantum Rényi divergence’, Period. Math. Hung.74 (2017), 88-107. doi:10.1007/s10998-016-0174-8 · Zbl 1399.47108
[5] Gaál, M. and Nagy, G., ‘Preserver problems related to quasi-arithmetic means of invertible positive operators’, Integr. Equ. Oper. Theory90 (2018), to appear. doi:10.1007/s00020-018-2426-x · Zbl 1390.15111
[6] Gehér, Gy. P., An elementary proof for the non-bijective version of Wigner’s theorem, Phys. Lett. A, 378, 2054-2057, (2014) · Zbl 1331.46066
[7] GyőRy, M., A new proof of Wigner’s theorem, Rep. Math. Phys., 54, 159-167, (2004) · Zbl 1161.81381
[8] Karder, M. and Petek, T., ‘Maps on states preserving generalized entropy of convex combinations’, Linear Algebra Appl.532 (2017), 86-98. doi:10.1016/j.laa.2017.06.003 · Zbl 1370.15028
[9] Li, Y. and Busch, P., ‘Von Neumann entropy and majorization’, J. Math. Anal. Appl.408 (2013), 384-393. doi:10.1016/j.jmaa.2013.06.019 · Zbl 1308.81050
[10] Molnár, L., Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, (2007), Springer: Springer, Berlin · Zbl 1119.47001
[11] Molnár, L. and Nagy, G., ‘Isometries and relative entropy preserving maps on density operators’, Linear Multilinear Algebra60 (2012), 93-108. doi:10.1080/03081087.2011.570267 · Zbl 1241.47034
[12] Molnár, L. and Nagy, G., ‘Transformations on density operators that leave the Holevo bound invariant’, Int. J. Theor. Phys.53 (2014), 3273-3278. doi:10.1007/s10773-013-1638-8 · Zbl 1302.81048
[13] Molnár, L. and Szokol, P., ‘Transformations preserving norms of means of positive operators and nonnegative functions’, Integral Equations Operator Theory83 (2015), 271-290. doi:10.1007/s00020-015-2241-6 · Zbl 1354.47026
[14] Nagy, G., ‘Preservers for the p-norm of linear combinations of positive operators’, Abstr. Appl. Anal.2014 (2014), 434121. doi:10.1155/2014/434121
[15] Neshveyev, S. and Størmer, E., Dynamical Entropy in Operator Algebras (Springer, Berlin, 2006). · Zbl 1109.46002
[16] Nielsen, M. and Chuang, I., Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2010). doi:10.1017/CBO9780511976667 · Zbl 1288.81001
[17] Virosztek, D., Maps on quantum states preserving Bregman and Jensen divergences, Lett. Math. Phys., 106, 1217-1234, (2016) · Zbl 1387.47022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.