×

Entropy of controlled invariant subspaces. (English) Zbl 1285.93042

Summary: For continuous-time linear control systems invariance entropy of controlled invariant subspaces is introduced. It is shown that it coincides with a variant of topological entropy for linear flows which we call subspace entropy. Using this characterization, upper bounds in terms of eigenvalues of an induced flow are derived. Under additional assumptions (diagonalizability, single inputs) these bounds are improved.

MSC:

93B60 Eigenvalue problems
93C05 Linear systems in control theory
93C15 Control/observation systems governed by ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] F. Allgöwer A. Zheng
[2] Basile, J. Optim. Theory Appl. 3 pp 306– (1969) · Zbl 0172.12501 · doi:10.1007/BF00931370
[3] G. Basile G. Marro
[4] Bowen, Trans. Am. Math. Soc. 153 pp 401– (1971) · doi:10.1090/S0002-9947-1971-0274707-X
[5] Carli, SIAM J. Control Optim. 48 pp 1251– (2009) · Zbl 1192.68845 · doi:10.1137/070709906
[6] F. Colonius
[7] Colonius, SIAM J. Control Optim. 50 pp 2988– (2012) · Zbl 1257.93074 · doi:10.1137/110829271
[8] Colonius, SIAM J. Control Optim. 48 pp 1701– (2009) · Zbl 1193.94049 · doi:10.1137/080713902
[9] Colonius, Math. Control Signals Syst. 22 pp 203– (2011) · Zbl 1248.94040 · doi:10.1007/s00498-011-0056-9
[10] Colonius, Syst. Control Lett. 62 pp 377– (2013) · Zbl 1276.93050 · doi:10.1016/j.sysconle.2013.01.008
[11] P.A. Fuhrmann
[12] Fuhrmann, Int. J. Control 31 pp 467– (1980) · Zbl 0489.93014 · doi:10.1080/00207178008961055
[13] Fuhrmann, Linear Algebr. Appl. 332-334 pp 265– (2001) · Zbl 1031.93062 · doi:10.1016/S0024-3795(01)00248-8
[14] L. Grüne J. Pannek
[15] Gupta, IEEE Trans. Autom. Control 54 pp 1807– (2009) · Zbl 1367.94093 · doi:10.1109/TAC.2009.2024567
[16] A. Katok B. Hasselblatt
[17] Kawan, SIAM J. Control Optim. 49 pp 732– (2011) · Zbl 1217.93031 · doi:10.1137/100783340
[18] Kawan, Nonlinearity 24 pp 1909– (2011) · Zbl 1217.93070 · doi:10.1088/0951-7715/24/7/001
[19] Kawan, Discrete Contin. Dyn. Syst. A 30 pp 169– (2011) · Zbl 1219.93047 · doi:10.3934/dcds.2011.30.169
[20] C. Kawan
[21] G. Marro F. Morbidi L. Ntogramatzidis D. Prattichizzo
[22] A.S. Matveev A.V. Savkin
[23] Nair, IEEE Trans. Autom. Control 49(9) pp 1585– (2004) · Zbl 1365.94158 · doi:10.1109/TAC.2004.834105
[24] M. Pollicott M. Yuri
[25] C. Robinson
[26] H.L. Trentelman
[27] H.L. Trentelman A.A. Stoorvogel M. Hautus
[28] J. Trumpf
[29] P. Walters
[30] Willems, Asterisque 75-76 pp 239– (1980)
[31] Willems, IEEE Trans. Autom. Control 26(1) pp 235– (1981) · Zbl 0463.93020 · doi:10.1109/TAC.1981.1102551
[32] M.W. Wonham
[33] Wong, IEEE Trans. Autom. Control 42 pp 1294– (1997) · Zbl 0952.93125 · doi:10.1109/9.623096
[34] Wong, IEEE Trans. Autom. Control 44 pp 1049– (1999) · Zbl 1136.93429 · doi:10.1109/9.763226
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.