×

Derivative-free global ship design optimization using global/local hybridization of the DIRECT algorithm. (English) Zbl 1365.90213

Summary: The application of global/local hybrid DIRECT algorithms to the simulation-based hull form optimization of a military vessel is presented, aimed at the reduction of the resistance in calm water. The specific features of the black-box-type objective function make the problem suitable for the application of DIRECT-type algorithms. The objective function is given by numerical iterative procedures, which could lead to inaccurate derivative calculations. In addition, the presence of local minima cannot be excluded a priori. The algorithms proposed (namely DIRMIN and DIRMIN-2) are hybridizations of the classic DIRECT algorithm, with deterministic derivative-free local searches. The algorithms’ performances are first assessed on a set of test problems, and then applied to the ship optimization application. The numerical results show that the local hybridization of the DIRECT algorithm has beneficial effects on the overall computational cost and on the efficiency of the simulation-based optimization procedure.

MSC:

90C26 Nonconvex programming, global optimization
90C56 Derivative-free methods and methods using generalized derivatives
90C90 Applications of mathematical programming

Software:

DIRECT; SDBOX
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Audet C, Dennis JE Jr (2006) Mesh adaptive direct search algorithms for constrained optimization. SIAM J Optim 17(1):188-217 · Zbl 1112.90078 · doi:10.1137/040603371
[2] Audet C, Béchard V, Le Digabel S (2008) Nonsmooth optimization through mesh adaptive direct search and variable neighborhood search. J Glob Optim 41(2):299-318 · Zbl 1157.90535 · doi:10.1007/s10898-007-9234-1
[3] Bartholomew-Biggs MC, Parkhurst SC, Wilson SP (2002) Using DIRECT to solve an aircraft routing problem. Comput Optim Appl 21(3):311-323 · Zbl 1017.90133 · doi:10.1023/A:1013729320435
[4] Bassanini P, Bulgarelli U, Campana E, Lalli F (1994) The wave resistance problem in a boundary integral formulation. Surv Math Ind 4:151-194 · Zbl 0812.76048
[5] Campana E, Peri D, Tahara Y, Stern F (2006) Shape optimization in ship hydrodynamics using computational fluid dynamics. Comput Methods Appl Mech Eng 196(1-3):634-651 · Zbl 1120.76311 · doi:10.1016/j.cma.2006.06.003
[6] Chen X, Diez M, Kandasamy M, Zhang Z, Campana EF, Stern F (2015) High-fidelity global optimization for shape design by dimensionality reduction, metamodels and particle swarm. Eng Optim 47(4):473-494 · doi:10.1080/0305215X.2014.895340
[7] Chiter L (2006) DIRECT algorithm: a new definition of potentially optimal hyperrectangles. Appl Math Comput 179(2):742-749 · Zbl 1102.65067 · doi:10.1016/j.amc.2005.11.127
[8] Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evolut Comput 6(2):182-197 · doi:10.1109/4235.996017
[9] Di Serafino D, Liuzzi G, Piccialli V, Riccio F, Toraldo G (2011) A modified DIviding RECTangles algorithm for a problem in astrophysics. J Optim Theory Appl 151(1):175-190 · Zbl 1226.90082 · doi:10.1007/s10957-011-9856-9
[10] Diez M, Iemma U (2012) Multidisciplinary conceptual design optimization of aircraft using a sound-matching-based objective function. Eng Optim 44(5):591-612 · doi:10.1080/0305215X.2011.591791
[11] Diez M, Peri D, Fasano G, Campana EF (2012) Hydroelastic optimization of a keel fin of a sailing boat: a multidisciplinary robust formulation for ship design. Struct Multidiscip Optim 46(4):613-625 · doi:10.1007/s00158-012-0783-7
[12] Diez M, Campana EF, Stern F (2015a) Design-space dimensionality reduction in shape optimization by Karhunen-Loève expansion. Comput Methods Appl Mech Eng 283:1525-1544 · Zbl 1423.74743 · doi:10.1016/j.cma.2014.10.042
[13] Diez M, Serani A, Campana E, Goren O, Sarioz K, Danisman D, Grigoropoulos G, Aloniati E, Visonneau M, Queutey P, Stern F (2015b) Multi-objective hydrodynamic optimization of the DTMB 5415 for resistance and seakeeping. In: Proceedings of the 13th international conference on fast sea transportation, FAST 2015, Washington, DC · Zbl 0988.90033
[14] Duddeck F (2008) Multidisciplinary optimization of car bodies. Struct Multidiscip Optim 35(4):375-389 · doi:10.1007/s00158-007-0130-6
[15] Gablonsky J, Kelley C (2001) A locally-biased form of the DIRECT algorithm. J Glob Optim 21(1):27-37 · Zbl 1039.90049 · doi:10.1023/A:1017930332101
[16] He J, Watson L, Ramakrishnan N, Shaffer C, Verstak A, Jiang J, Bae K, Tranter W (2002) Dynamic data structures for a direct search algorithm. Comput Optim Appl 23(1):5-25 · Zbl 1036.90055 · doi:10.1023/A:1019992822938
[17] He J, Verstak A, Watson L, Sosonkina M (2008) Design and implementation of a massively parallel version of DIRECT. Comput Optim Appl 40:217-245 · Zbl 1181.90138 · doi:10.1007/s10589-007-9092-2
[18] He J, Verstak A, Watson L, Sosonkina M (2009a) Performance modeling and analysis of a massively parallel DIRECT—part 1. Int J High Perform Comput Appl 23:14-28 · doi:10.1177/1094342008098462
[19] He J, Verstak A, Watson L, Sosonkina M (2009b) Performance modeling and analysis of a massively parallel DIRECT—part 2. Int J High Perform Comput Appl 23:29-41 · doi:10.1177/1094342008098463
[20] Hojjat M, Stavropoulou E, Bletzinger KU (2014) The vertex morphing method for node-based shape optimization. Comput Methods Appl Mech Eng 268:494-513 · Zbl 1295.74082 · doi:10.1016/j.cma.2013.10.015
[21] Irvine M Jr, Longo J, Stern F (2008) Pitch and heave tests and uncertainty assessment for a surface combatant in regular head waves. J Ship Res 52(2):146-163
[22] Jones, D.; Pardalos, PM (ed.); Floudas, CA (ed.), DIRECT global optimization, 725-735 (2009), Berlin · doi:10.1007/978-0-387-74759-0_128
[23] Jones D, Perttunen C, Stuckman B (1993) Lipschitzian optimization without the Lipschitz constant. J Optim Theory Appl 79(1):157-181 · Zbl 0796.49032 · doi:10.1007/BF00941892
[24] Kandasamy M, Peri D, Tahara Y, Wilson W, Miozzi M, Georgiev S, Milanov E, Campana EF, Stern F (2013) Simulation based design optimization of waterjet propelled Delft catamaran. Int Shipbuild Progr 60(1):277-308
[25] Kandasamy M, Wu P, Zalek S, Karr D, Bartlett S, Nguyen L, Stern F (2014) CFD based hydrodynamic optimization and structural analysis of the hybrid ship hull. SNAME Trans (To appear)
[26] Kirkpatrick S (1984) Optimization by simulated annealing: quantitative studies. J Stat Phys 34(5-6):975-986 · doi:10.1007/BF01009452
[27] Kirkpatrick S, Gelatt CD Jr, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671-680 · Zbl 1225.90162 · doi:10.1126/science.220.4598.671
[28] Kolda TG, Lewis RM, Torczon V (2003) Optimization by direct search: new perspectives on some classical and modern methods. SIAM Rev 45(3):385-482 · Zbl 1059.90146 · doi:10.1137/S003614450242889
[29] Kotinis M, Kulkarni A (2012) Multi-objective shape optimization of transonic airfoil sections using swarm intelligence and surrogate models. Struct Multidiscip Optim 45(5):747-758 · doi:10.1007/s00158-011-0719-7
[30] Liuzzi G, Lucidi S, Piccialli V (2010) A DIRECT-based approach exploiting local minimizations for the solution of large-scale global optimization problems. Comput Optim Appl 45:353-375 · Zbl 1187.90275 · doi:10.1007/s10589-008-9217-2
[31] Liuzzi G, Lucidi S, Piccialli V (2015) Exploiting derivative-free local searches in DIRECT-type algorithms for global optimization. Comput Optim Appl. doi:10.1007/s10589-015-9741-9 · Zbl 1370.90194
[32] Longo J, Stern F (2005) Uncertainty assessment for towing tank tests with example for surface combatant DTMB model 5415. J Ship Res 49(1):55-68
[33] Lucidi S, Sciandrone M (2002) A derivative-free algorithm for bound constrained optimization. Comput Optim Appl 21(2):119-142 · Zbl 0988.90033 · doi:10.1023/A:1013735414984
[34] Moré J, Wild S (2009) Benchmarking derivative-free optimization algorithms. SIAM J Optim 20(1):172-191 · Zbl 1187.90319 · doi:10.1137/080724083
[35] Olivieri A, Pistani F, Avanzini A, Stern F, Penna R (2001) Towing tank experiments of resistance, sinkage and trim, boundary layer, wake, and free surface flow around a naval combatant INSEAN 2340 model. Technical report, DTIC Document · Zbl 1112.90078
[36] Papanikolaou A (2010) Holistic ship design optimization. Comput-Aided Des 42(11):1028-1044 · doi:10.1016/j.cad.2009.07.002
[37] Schillings C, Schmidt S, Schulz V (2011) Efficient shape optimization for certain and uncertain aerodynamic design. Comput Fluids 46(1):78-87 · Zbl 1431.76015 · doi:10.1016/j.compfluid.2010.12.007
[38] Schlichting H, Gersten K (2000) Boundary-layer theory. Springer, Berlin · Zbl 0940.76003 · doi:10.1007/978-3-642-85829-1
[39] Serani A, Diez M, Leotardi C, Peri D, Fasano G, Iemma U, Campana E (2014) On the use of synchronous and asynchronous single-objective deterministic particle swarm optimization in ship design problems. In: Proceedings of the 1st international conference in engineering and applied sciences optimization, Kos · Zbl 0812.76048
[40] Serani A, Fasano G, Liuzzi G, Lucidi S, Iemma U, Campana EF, Diez M (2015) Derivative-free global design optimization in ship hydrodynamics by local hybridization. In: Proceedings of COMPIT, 14th international conference on computer applications and information technology in the maritime industries, 2015, Ulrichshusen · Zbl 1365.90213
[41] Stern F, Longo J, Penna R, Olivieri A, Ratcliffe T, Coleman H (2000) International collaboration on benchmark CFD validation data for surface combatant DTMB model 5415. In: Proceedings of the twenty-third symposium on naval hydrodynamics, Val de Reuil
[42] Tahara Y, Peri D, Campana E, Stern F (2008) Computational fluid dynamics-based multiobjective optimization of a surface combatant using a global optimization method. J Mar Sci Technol 13:95-116 · doi:10.1007/s00773-007-0264-7
[43] Telste J, Reed A (1994) Calculation of transom stern flows. In: Proceedings of the sixth international conference on numerical ship hydrodynamics, pp 78-92 · Zbl 1039.90049
[44] Volpi S, Diez M, Gaul NJ, Song H, Iemma U, Choi K, Campana EF, Stern F (2015) Development and validation of a dynamic metamodel based on stochastic radial basis functions and uncertainty quantification. Struct Multidiscip Optim 51(2):357-368 · doi:10.1007/s00158-014-1128-5
[45] Wang H, Lia G, Lib E (2010) Time-based metamodeling technique for vehicle crashworthiness optimization. Comput Methods Appl Mech Eng 199:2497-2509 · Zbl 1231.74356 · doi:10.1016/j.cma.2010.04.002
[46] Zhu H, Bogy D (2002) DIRECT algorithm and its application to slider air-bearing surface optimization. IEEE Trans Magn 38(5):2168-2170 · doi:10.1109/TMAG.2002.802794
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.