×

Frobenius distributions of Drinfeld modules of any rank. (English) Zbl 1012.11048

Let \(A =\mathbb{F}_q[T]\) be the polynomial ring in an indeterminate \(T\) over the finite field \(\mathbb{F}_q\), with quotient field \(F =\mathbb{F}_q(T)\). Drinfeld \(A\)-modules, and in particular Drinfeld modules of rank two, offer striking similarities with elliptic curves over the rationals. For example, if \(E/\mathbb{Q}\) is an elliptic curve without complex multiplication, S. Lang and H. Trotter [Lect. Notes Math. 504, Springer, Berlin (1976; Zbl 0329.12015)] formulated a precise conjecture about the growth of the function \(x\longmapsto \#\{p \leq x \mid \text{tr}(E,p) = t\}\), where \(t \in \mathbb{Z}\) is fixed and \(\text{tr}(E,p)\) is the Frobenius trace of the reduction of \(E\) at the prime \(p \in {\mathbb{N}},\) neglecting the finite number of \(p\) with bad reduction of \(E\). The Lang-Trotter conjecture, suitably adapted, may be translated to Drinfeld modules. The present paper is dedicated to a proof of a result toward the “Lang-Trotter” conjecture on Drinfeld modules. It is as follows. Let \(\Phi\) be a Drinfeld \(A\)-module of rank \(r \in {\mathbb{N}}\) over \(F\), \(t \in A\), and put \[ \pi_t(k) := \# \{\text{primes }\mathfrak p \subset A~|\text{ deg } \mathfrak p = k\text{ and tr}(\Phi,\mathfrak p) = t\}. \] Then the author’s result Theorem 1.1 states that \[ \pi_t(k) \ll \frac{r}{k}q^{k\theta(r)}, \] where \(\theta(r) = 1-\frac{1}{2(r^2+2r)}\) depends only on \(\Phi\), which is supposed to possess no “complex multiplications” other than the operators in \(A\). The result, which is the first in this direction, is much weaker than the actual conjecture, both since \(k\cdot \theta(r)\) is larger than the expected correct exponent \(k(1-\frac{1}{r})\) and since it doesn’t provide lower estimates of \(\pi_t(k)\). The proof is modelled after J.-P. Serre’s proof of a corresponding result for elliptic curves [see Publ. Math., Inst. Hautes Étud. Sci. 54, 123-202 (1981; Zbl 0496.12011)]. An important ingredient (the openness of the image of Galois in the adelic representation associated with \(E\)) is presently not available for Drinfeld modules. Instead, a weaker result of R. Pink [Ann. Math. (2) 135, 483-525 (1992; Zbl 0796.14007)] about Galois representations attached to Drinfeld modules is used.

MSC:

11G09 Drinfel’d modules; higher-dimensional motives, etc.
11F80 Galois representations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bayer, P.; Gonzáles, J., On the Hasse-Witt Invariants of modular curves, Experiment. Math., 6, 57-76 (1997) · Zbl 0923.11090
[2] Brown, M., Singular moduli and supersingular moduli of Drinfeld modules, Invent. Math., 110, 419-439 (1992) · Zbl 0767.11028
[3] David, C., Supersingular reduction of Drinfeld modules, Duke Math. J., 78, 399-412 (1995) · Zbl 0842.11025
[4] David, C., Average distribution of supersingular Drinfeld modules, J. Number Theory, 56, 366-380 (1996) · Zbl 0852.11031
[5] Elkies, N., The existence of infinitely many supersingular primes for every elliptic curve over \(Q\), Invent. Math., 89, 561-567 (1987) · Zbl 0631.14024
[6] Fried, M. D.; Jarden, M., Field Arithmetic (1986), Springer-Verlag: Springer-Verlag Berlin/New York
[7] Gekeler, E.-U, On finite Drinfeld modules, J. Algebra, 141, 167-182 (1991)
[8] Goss, D., Basic Structures of Function Field Arithmetic (1996), Springer-Verlag: Springer-Verlag Berlin · Zbl 0874.11004
[9] Gouvêa, F., Non-ordinary primes: a story, Experiment. Math., 6, 195-205 (1997) · Zbl 0887.11020
[10] Hayes, D., A brief introduction to Drinfeld modules, (Goss, D., The Arithmetic of Function Fields (1992), de Gruyter: de Gruyter Berlin), 1-32 · Zbl 0793.11015
[11] Murty, V. K., Frobenius distributions and Galois representations, Proc. Sympos. Pure Math., 66, 193-211 (1999) · Zbl 1003.11021
[12] Trotter, H.; Lang, S., Frobenius Distributions in \(GL_2\) Extensions. Frobenius Distributions in \(GL_2\) Extensions, Lecture Notes in Mathematics, 504 (1976), Springer-Verlag: Springer-Verlag Berlin
[13] Pink, R., The Mumford-Tate conjecture for Drinfeld modules, Publ. Res. Inst. Math. Sci. Kyoto Univ., 33, 393-425 (1997) · Zbl 0895.11025
[14] Poonen, B., Drinfeld modules with no supersingular primes, Internat. Math. Res. Notices, 3, 151-159 (1998) · Zbl 0898.11024
[15] Serre, J.-P, Propriétés galoisiennes des points d’ordre fini des courbes elliptiques, Invent. Math., 15, 259-331 (1972) · Zbl 0235.14012
[16] Serre, J.-P, Quelques applications du théorème de densité de Chebotarev, Inst. Hautes Études Sci. Publ. Math., 54, 323-401 (1981)
[17] Serre, J.-P, Local Fields. Local Fields, Graduate Texts in Math. (1979), Springer-Verlag: Springer-Verlag New York
[18] Taguchi, Y., Ramifications arising from Drinfeld modules, (Goss, D., The Arithmetic of Function Fields (1992), de Gruyter: de Gruyter Berlin), 171-188 · Zbl 0801.11027
[19] Yu, J.-K, Isogenies of Drinfeld modules over finite fields, J. Number Theory, 54, 161-171 (1995) · Zbl 0837.11036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.