×

Colombo’s top. (English) Zbl 0657.70019

The empirical laws describing the rotation of the moon are generalized and discussed. G. Colombo’s results [Cassini’s second and third law, Astron. J. 71, 891-896 (1966)] for an axially symmetric planet with an arbitrary spin angular velocity are used. It is shown that the derivative of the critical areas are simple analytical functions of the parameters of the problem.

MSC:

70F15 Celestial mechanics
70K20 Stability for nonlinear problems in mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Beletskii, V.V., 1972, Resonance Rotation of Celestial Bodies and Cassini’s Laws. Celest. Mech. 356?378. · Zbl 0244.70011
[2] Borderies, N., 1980, La rotation de Mars. Thesis. Univ. Paul Sabatier, Toulouse, France.
[3] Bretagnon, P., 1974, Termes à lengues périodes dans le Système Solaire. Astron. Astrophys. 30, 141?162. · Zbl 0271.70011
[4] Cassini, G.D., 1963, Traité de l’Origine et des Progrès de l’Astronomie (Paris).
[5] Colombo, G., 1966, Cassini’s Second and Third Laws. Astron. J. 71, 891?896. · doi:10.1086/109983
[6] Deprit, A., 1967, Free Rotation of a Rigid Body Studies in the Phase Plane. Am. J. of Physics, 35, 424?428. · doi:10.1119/1.1974113
[7] Cary, J.R., Escande, D.F. and Tennyson, J.L., 1987, Adiabatic Invariant change due to Separatrix Crossing. Phys. Rev. A, 34, 4256?4257. · doi:10.1103/PhysRevA.34.4256
[8] Escande, D.F., 1985, Changes of Adiabatic Invariant at Separatrix Crossing: Application to Slow Hamiltonian Chaos, in: ?Advances in nonlinear dynamics and stochastic process (R. Livi and A. Politi eds) World Scientific, Singapore, pp. 67?79. · Zbl 0643.58010
[9] Henrard, J., 1982, Capture into resonance: An extension of the use of Adiabatic Invariants. Celest. Mech. 27, 3?22. · Zbl 0488.70011 · doi:10.1007/BF01228946
[10] Henrard, J., 1987, The Adiabatic Invariant in Classical Mechanics, submitted for publication in Dynamics reported.
[11] Henrard, J. and Lemaître, A., 1983, A Second Fundamental Model for Resonance, Celest. Mech. 30, 197?218. · Zbl 0513.70012 · doi:10.1007/BF01234306
[12] Henrard, J. and Moons, M., 1978, Hamiltonian Theory of the Libration of the Moon. Dynamics of Planets and Satellites (V. Szebehely ed.) Reidel P.C. · Zbl 0389.70018
[13] Kinoshita, H., 1975, Formulas for Precession. Smithsonian Astrophys. Obs. Special Report, no364.
[14] Kinoshita, H., 1977, Theory of the Rotation of the Rigid Earth. Celest. Mech. 15, 277?326. · doi:10.1007/BF01228425
[15] Moons, M., 1982, Physical Libration of the Moon, Celest. Mech. 26, 131?142. · Zbl 0511.70015 · doi:10.1007/BF01230875
[16] Moons, M., 1984, Planetary Perturbations on the Libration of the Moon, Celest. Mech. 34, 263?273. · Zbl 0575.70006 · doi:10.1007/BF01235808
[17] Peale, S.J., 1969, Generalized Cassini’s Laws, Astron. J. 74, 483?489. · Zbl 0215.57003 · doi:10.1086/110825
[18] Peale, S.J., 1974, Possible Histories of the Obliquity of Mercury, Astron. J. 79, 722?744. · doi:10.1086/111604
[19] Squyres, S.W., 1984, The History of Water on Mars, Ann. Rev. Earth Planet. Sci. 12, 83?106. · doi:10.1146/annurev.ea.12.050184.000503
[20] Ward, W.R., 1975, Tidal Friction and Generalized Cassini’s Laws in the Solar System, Astron. J. 80, 64?70. · doi:10.1086/111714
[21] Ward, W.R., Burns, J.A., and Toon, O.B., 1979, Past Obliquity Oscillations of Mars: The Role of the Tharsis Uplift, J. of Geophy. R. 84, 243?258. · doi:10.1029/JB084iB01p00243
[22] Yoder, C.F., 1979, Diagrammatic Theory of Transition of Pendulum Like Systems, Celest. Mech. 19, 3?30. · Zbl 0393.70026 · doi:10.1007/BF01230171
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.