×

Asymptotic states for equations of reaction and diffusion. (English) Zbl 0405.35044


MSC:

35K55 Nonlinear parabolic equations
35B40 Asymptotic behavior of solutions to PDEs
35B10 Periodic solutions to PDEs
35B25 Singular perturbations in context of PDEs
35K45 Initial value problems for second-order parabolic systems
35Q99 Partial differential equations of mathematical physics and other areas of application
35R30 Inverse problems for PDEs
92D10 Genetics and epigenetics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Herbert Amann, Invariant sets and existence theorems for semilinear parabolic and elliptic systems, J. Math. Anal. Appl. 65 (1978), no. 2, 432 – 467. · Zbl 0387.35038 · doi:10.1016/0022-247X(78)90192-0
[2] D. G. Aronson, The asymptotic speed of propagation of a simple epidemic, Nonlinear diffusion (NSF-CBMS Regional Conf. Nonlinear Diffusion Equations, Univ. Houston, Houston, Tex., 1976) Pitman, London, 1977, pp. 1 – 23. Res. Notes Math., No. 14.
[3] D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation, Partial differential equations and related topics (Program, Tulane Univ., New Orleans, La., 1974) Springer, Berlin, 1975, pp. 5 – 49. Lecture Notes in Math., Vol. 446. · Zbl 0325.35050
[4] D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusion arising in population genetics, Adv. in Math. 30 (1978), no. 1, 33 – 76. · Zbl 0407.92014 · doi:10.1016/0001-8708(78)90130-5
[5] C. Atkinson and G. E. H. Reuter, Deterministic epidemic waves, Math. Proc. Cambridge Philos. Soc. 80 (1976), no. 2, 315 – 330. · Zbl 0338.92019 · doi:10.1017/S0305004100052944
[6] J. F. G. Auchmuty, Qualitative effects of diffusion in chemical systems, Some mathematical questions in biology, IX (Proc. 11th Sympos., Denver, Colo., 1977) Lectures Math. Life Sci., vol. 10, Amer. Math. Soc., Providence, R.I., 1978, pp. 49 – 99. · Zbl 0411.76063
[7] Claude Bardos and Joël Smoller, Instabilité des solutions stationnaires pour des systèmes de réaction-diffusion, C. R. Acad. Sci. Paris Sér. A-B 285 (1977), no. 4, A249 – A252 (French, with English summary). · Zbl 0363.35018
[8] Jonathan Bell and L. Pamela Cook, On the solutions of a nerve conduction equation, SIAM J. Appl. Math. 35 (1978), no. 4, 678 – 688. · Zbl 0449.35084 · doi:10.1137/0135056
[9] Gail A. Carpenter, A geometric approach to singular perturbation problems with applications to nerve impulse equations, J. Differential Equations 23 (1977), no. 3, 335 – 367. , https://doi.org/10.1016/0022-0396(77)90116-4 Gail A. Carpenter, Periodic solutions of nerve impulse equations, J. Math. Anal. Appl. 58 (1977), no. 1, 152 – 173. · Zbl 0353.35058 · doi:10.1016/0022-247X(77)90235-9
[10] Gail A. Carpenter, A geometric approach to singular perturbation problems with applications to nerve impulse equations, J. Differential Equations 23 (1977), no. 3, 335 – 367. , https://doi.org/10.1016/0022-0396(77)90116-4 Gail A. Carpenter, Periodic solutions of nerve impulse equations, J. Math. Anal. Appl. 58 (1977), no. 1, 152 – 173. · Zbl 0353.35058 · doi:10.1016/0022-247X(77)90235-9
[11] Richard G. Casten, Hirsh Cohen, and Paco A. Lagerstrom, Perturbation analysis of an approximation to the Hodgkin-Huxley theory, Quart. Appl. Math. 32 (1974/75), 365 – 402. · Zbl 0365.92005
[12] Nathaniel Chafee, A stability analysis for a semilinear parabolic partial differential equation, J. Differential Equations 15 (1974), 522 – 540. · Zbl 0271.35043 · doi:10.1016/0022-0396(74)90071-0
[13] Donald S. Cohen, Frank C. Hoppensteadt, and Robert M. Miura, Slowly modulated oscillations in nonlinear diffusion processes, SIAM J. Appl. Math. 33 (1977), no. 2, 217 – 229. · Zbl 0373.35033 · doi:10.1137/0133013
[14] Hirsh Cohen, Nonlinear diffusion problems, Studies in applied mathematics, Math. Assoc. Amer. (distributed by Prentice-Hall, Englewood Cliffs, N. J.), 1971, pp. 27 – 64. MAA Studies in Math., Vol. 7.
[15] Charles C. Conley, On traveling wave solutions of nonlinear diffusion equations, Dynamical systems, theory and applications (Rencontres, Battelle Res. Inst., Seattle, Wash., 1974) Springer, Berlin, 1975, pp. 498 – 510. Lecture Notes in Phys., Vol. 38.
[16] Charles Conley, Isolated invariant sets and the Morse index, CBMS Regional Conference Series in Mathematics, vol. 38, American Mathematical Society, Providence, R.I., 1978. · Zbl 0397.34056
[17] P. Hilton , Structural stability, the theory of catastrophes, and applications in the sciences, Lecture Notes in Mathematics, Vol. 525, Springer-Verlag, Berlin-New York, 1976. · Zbl 0322.00015
[18] Edward Conway, David Hoff, and Joel Smoller, Large time behavior of solutions of systems of nonlinear reaction-diffusion equations, SIAM J. Appl. Math. 35 (1978), no. 1, 1 – 16. · Zbl 0383.35035 · doi:10.1137/0135001
[19] Jack D. Cowan , Some mathematical questions in biology. V, The American Mathematical Society, Providence, R. I., 1974. Lectures on Mathematics in the Life Sciences, Vol. 6. · Zbl 0294.00011
[20] O. Diekmann, Thresholds and travelling waves for the geographical spread of infection, J. Math. Biol. 6 (1978), no. 2, 109 – 130. · Zbl 0415.92020 · doi:10.1007/BF02450783
[21] N. M. Temme , Nonlinear analysis. Vol. 1, Mathematisch Centrum, Amsterdam, 1976. With contributions by L. A. Peletier, T. H. Koornwinder, N. M. Temme, O. Diekmann and I. G. Sprinkhuizen-Kuyper; MC Syllabus, No. 26.1. N. M. Temme , Nonlinear analysis. Vol. 2, Mathematisch Centrum, Amsterdam, 1976. With contributions by T. M. T. Coolen, G. M. Willems, J. W. de Roever, B. Dijkhuis, and E. W. C. van Groesen; MC Syllabus, No. 26.2.
[22] John W. Evans, Nerve axon equations. III. Stability of the nerve impulse, Indiana Univ. Math. J. 22 (1972/73), 577 – 593. · Zbl 0245.92004 · doi:10.1512/iumj.1972.22.22048
[23] John W. Evans, Nerve axon equations. IV. The stable and the unstable impulse, Indiana Univ. Math. J. 24 (1974/75), no. 12, 1169 – 1190. · Zbl 0317.92006 · doi:10.1512/iumj.1975.24.24096
[24] D. Feinn and P. Ortoleva, Catastrophe and propagation in chemical reactions, J. Chem. Phys. 67 (1977), no. 5, 2119 – 2131. · doi:10.1063/1.435098
[25] John A. Feroe, Local existence of the nerve impulse, Math. Biosci. 38 (1978), no. 3 – 4, 259 – 277. · Zbl 0391.92006 · doi:10.1016/0025-5564(78)90048-2
[26] Paul C. Fife, Boundary and interior transition layer phenomena for pairs of second-order differential equations, J. Math. Anal. Appl. 54 (1976), no. 2, 497 – 521. · Zbl 0345.34044 · doi:10.1016/0022-247X(76)90218-3
[27] P. C. Fife, Stationary patterns for reaction-diffusion equations, Nonlinear diffusion (NSF-CBMS Regional Conf., Univ. Houston, Houston, Tex., 1976) Pitman, London, 1977, pp. 81 – 121. Res. Notes Math., No. 14.
[28] P. C. Fife, On modelling pattern formation by activator-inhibitor systems, J. Math. Biol. 4 (1977), no. 4, 353 – 362. · Zbl 0403.92005 · doi:10.1007/BF00275083
[29] Paul C. Fife, Asymptotic analysis of reaction-diffusion wave fronts, Proceedings of the Regional Conference on the Application of Topological Methods in Differential Equations (Boulder, Colo., 1976), 1977, pp. 389 – 415. · Zbl 0372.35048 · doi:10.1216/RMJ-1977-7-3-389
[30] Paul C. Fife and J. B. McLeod, The approach of solutions of nonlinear diffusion equations to travelling front solutions, Arch. Ration. Mech. Anal. 65 (1977), no. 4, 335 – 361. · Zbl 0361.35035 · doi:10.1007/BF00250432
[31] Alfred Gierer and Hans Meinhardt, Biological pattern formation involving lateral inhibition, Some mathematical questions in biology, VI (Proc. Eighth Sympos., Mathematical Biology, San Francisco, Calif., 1974) Amer. Math. Soc., Providence, R.I., 1974, pp. 163 – 183. Lectures on Math. in the Life Sciences, Vol. 7. · Zbl 0297.92007
[32] J. M. Greenberg, Periodic solutions to reaction-diffusion equations, SIAM J. Appl. Math. 30 (1976), no. 2, 199 – 205. · Zbl 0326.35043 · doi:10.1137/0130022
[33] J. M. Greenberg, Axi-symmetric, time-periodic solutions of reaction-diffusion equations, SIAM J. Appl. Math. 34 (1978), no. 2, 391 – 397. · Zbl 0472.76100 · doi:10.1137/0134032
[34] J. M. Greenberg and S. P. Hastings, Spatial patterns for discrete models of diffusion in excitable media, SIAM J. Appl. Math. 34 (1978), no. 3, 515 – 523. · Zbl 0398.92004 · doi:10.1137/0134040
[35] J. M. Greenberg, B. D. Hassard, and S. P. Hastings, Pattern formation and periodic structures in systems modeled by reaction-diffusion equations, Bull. Amer. Math. Soc. 84 (1978), no. 6, 1296 – 1327. · Zbl 0424.35011
[36] Stuart Hastings, The existence of periodic solutions to Nagumo’s equation, Quart. J. Math. Oxford Ser. (2) 25 (1974), 369 – 378. · Zbl 0305.34058 · doi:10.1093/qmath/25.1.369
[37] S. P. Hastings, Some mathematical problems from neurobiology, Amer. Math. Monthly 82 (1975), no. 9, 881 – 895. · Zbl 0347.92001 · doi:10.2307/2318490
[38] S. P. Hastings, On the existence of homoclinic and periodic orbits for the Fitzhugh-Nagumo equations, Quart. J. Math. Oxford Ser. (2) 27 (1976), no. 105, 123 – 134. · Zbl 0322.92008 · doi:10.1093/qmath/27.1.123
[39] S. P. Hastings, On travelling wave solutions of the Hodgkin-Huxley equations, Arch. Rational Mech. Anal. 60 (1975/76), no. 3, 229 – 257. · Zbl 0374.35004 · doi:10.1007/BF01789258
[40] Daniel Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics, vol. 840, Springer-Verlag, Berlin-New York, 1981. · Zbl 0456.35001
[41] Frank Hoppensteadt, Mathematical theories of populations: demographics, genetics and epidemics, Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1975. Regional Conference Series in Applied Mathematics. · Zbl 0304.92012
[42] L. N. Howard and N. Kopell, Wave trains, shock fronts, and transition layers in reaction-diffusion equations, Mathematical aspects of chemical and biochemical problems and quantum chemistry (Proc. SIAM-AMS Sympos. Appl. Math., New York, 1974) Amer. Math. Soc., Providence, R. I., 1974, pp. 1 – 12. SIAM-AMS Proceedings, Vol. VIII. · Zbl 0305.35055
[43] L. N. Howard and N. Kopell, Slowly varying waves and shock structures in reaction-diffusion equations, Studies in Appl. Math. 56 (1976/77), no. 2, 95 – 145. · Zbl 0349.35070
[44] Daniel D. Joseph, Stability of fluid motions. I, Springer-Verlag, Berlin-New York, 1976. Springer Tracts in Natural Philosophy, Vol. 27. · Zbl 0345.76022
[45] Ja. I. Kanel\(^{\prime}\), Stabilization of solutions of the Cauchy problem for equations encountered in combustion theory, Mat. Sb. (N.S.) 59 (101) (1962), no. suppl., 245 – 288 (Russian).
[46] Ja. I. Kanel\(^{\prime}\), Stabilization of the solutions of the equations of combustion theory with finite initial functions, Mat. Sb. (N.S.) 65 (107) (1964), 398 – 413 (Russian).
[47] Yoshinori Kametaka, On the nonlinear diffusion equation of Kolmogorov-Petrovskii-Piskunov type, Osaka J. Math. 13 (1976), no. 1, 11 – 66. · Zbl 0344.35050
[48] James P. Keener, Activators and inhibitors in pattern formation, Stud. Appl. Math. 59 (1978), no. 1, 1 – 23. · Zbl 0407.92023 · doi:10.1002/sapm19785911
[49] Hansjörg Kielhöfer, On the Lyapunov-stability of stationary solutions of semilinear parabolic differential equations, J. Differential Equations 22 (1976), no. 1, 193 – 208. · Zbl 0341.35049 · doi:10.1016/0022-0396(76)90011-5
[50] N. Kopell and L. N. Howard, Plane wave solutions to reaction-diffusion equations, Studies in Appl. Mat. 52 (1973), 291 – 328. · Zbl 0305.35081
[51] Simon A. Levin, Population models and community structure in heterogeneous environments, Mathematical ecology (Miramare-Trieste, 1982) Biomathematics, vol. 17, Springer, Berlin, 1986, pp. 295 – 320.
[52] H. P. McKean Jr., Nagumo’s equation, Advances in Math. 4 (1970), 209 – 223 (1970). · Zbl 0202.16203 · doi:10.1016/0001-8708(70)90023-X
[53] H. P. McKean, Application of Brownian motion to the equation of Kolmogorov-Petrovskii-Piskunov, Comm. Pure Appl. Math. 28 (1975), no. 3, 323 – 331. · Zbl 0316.35053 · doi:10.1002/cpa.3160280302
[54] J. Rinzel, Neutrally stable traveling wave solutions of nerve conduction equations, J. Math. Biol. 2 (1975), no. 3, 205 – 217. · Zbl 0316.92002 · doi:10.1007/BF00277150
[55] Franz Rothe, Convergence to travelling fronts in semilinear parabolic equations, Proc. Roy. Soc. Edinburgh Sect. A 80 (1978), no. 3-4, 213 – 234. · Zbl 0389.35024 · doi:10.1017/S0308210500010258
[56] D. H. Sattinger, On the stability of waves of nonlinear parabolic systems, Advances in Math. 22 (1976), no. 3, 312 – 355. · Zbl 0344.35051 · doi:10.1016/0001-8708(76)90098-0
[57] D. H. Sattinger, Weighted norms for the stability of traveling waves, J. Differential Equations 25 (1977), no. 1, 130 – 144. · Zbl 0315.35010 · doi:10.1016/0022-0396(77)90185-1
[58] Lee A. Segel and Simon A. Levin, Application of nonlinear stability theory to the study of the effects of diffusion on predator-prey interactions, Topics in statistical mechanics and biophysics: a memorial to Julius L. Jackson, Amer. Inst. Phys., New York, 1976, pp. 123 – 152. AIP Conf. Proc., No. 27.
[59] A. N. Stokes, On two types of moving front in quasilinear diffusion, Math. Biosci. 31 (1976), no. 3-4, 307 – 315. · Zbl 0333.35048 · doi:10.1016/0025-5564(76)90087-0
[60] Kôhei Uchiyama, The behavior of solutions of the equation of Kolmogorov-Petrovsky-Piskunov, Proc. Japan Acad. Ser. A Math. Sci. 53 (1977), no. 7, 225 – 228. · Zbl 0389.35026
[61] Wolfgang Wasow, Asymptotic expansions for ordinary differential equations, Pure and Applied Mathematics, Vol. XIV, Interscience Publishers John Wiley & Sons, Inc., New York-London-Sydney, 1965. · Zbl 0133.35301
[62] H. F. Weinberger, Asymptotic behavior of a model in population genetics, Nonlinear partial differential equations and applications (Proc. Special Sem., Indiana Univ., Bloomington, Ind., 1976 – 1977) Springer, Berlin, 1978, pp. 47 – 96. Lecture Notes in Math., Vol. 648.
[63] Arthur T. Winfree, Rotating solutions to reaction-diffusion equations in simply-connected media, Mathematical aspects of chemical and biochemical problems and quantum chemistry (Proc. SIAM-AMS Sympos. Appl. Math., New York, 1974) Amer. Math. Soc., Providence, R.I., 1974, pp. 13 – 31. SIAM-AMS Proceedings, Vol. VIII. · Zbl 0322.35046
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.