×

Compressed sensing, sparse inversion, and model mismatch. (English) Zbl 1333.94022

Boche, Holger (ed.) et al., Compressed sensing and its applications. MATHEON workshop, Berlin, Germany, December 2013. Cham: Birkhäuser/Springer (ISBN 978-3-319-16041-2/hbk; 978-3-319-16042-9/ebook). Applied and Numerical Harmonic Analysis, 75-95 (2015).
Summary: The advent of compressed sensing theory has revolutionized our view of imaging, as it demonstrates that subsampling has manageable consequences for image inversion, provided that the image is sparse in an apriori known dictionary. For imaging problems in spectrum analysis (estimating complex exponential modes), and passive and active radar/sonar (estimating Doppler and angle of arrival), this dictionary is usually taken to be a DFT basis (or frame) constructed for resolution of \(2\pi/n\), with \(n\) a window length, array length, or pulse-to-pulse processing length. However, in reality no physical field is sparse in a DFT frame or in any apriori known frame. No matter how finely we grid the parameter space (e.g., frequency, delay, Doppler, and/or wavenumber) the sources may not lie in the center of the grid cells and consequently there is always mismatch between the assumed and the actual frames for sparsity. But what is the sensitivity of compressed sensing to mismatch between the physical model that generated the data and the mathematical model that is assumed in the sparse inversion algorithm? In this chapter, we study this question. The focus is on the canonical problem of DFT inversion for modal analysis.
For the entire collection see [Zbl 1320.94007].

MSC:

94A12 Signal theory (characterization, reconstruction, filtering, etc.)

Software:

CoSaMP
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Baraniuk, R., Steeghs, P.: Compressive radar imaging. In: Proc. 2007 IEEE radar conf., pp. 128-133. Waltham, Massachusetts (2007)
[2] Candes, E., Fernandez-Granda, C.: Towards a mathematical theory of super-resolution. preprint (Mar. 2012, arxiv:1203.5871.) · Zbl 1350.94011
[3] Candés, E. J., The restricted isometry property and its implications for compressed sensing, Académie des Sciences, 1, 346, 589-592 (2008) · Zbl 1153.94002
[4] Candés, E. J.; Romberg, J.; Tao, T., Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information, IEEE Trans. Inform. Theory, 52, 2, 489-509 (2006) · Zbl 1231.94017
[5] Candés, E. J.; Tao, T., Decoding by linear programming, IEEE Trans. Inform. Theory, 51, 4203-4215 (2005) · Zbl 1264.94121
[6] Cevher, V., Gurbuz, A., McClellan, J., Chellappa, R.: Compressive wireless arrays for bearing estimation of sparse sources in angle domain. In: Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP), pp. 2497-2500. Las Vegas, Nevada (2008)
[7] Chandrasekaran, V.; Recht, B.; Parrilo, P. A.; Willsky, A. S., The convex geometry of linear inverse problems, Found. Comput. Math., 12, 6, 805-849 (2012) · Zbl 1280.52008
[8] Chen, Y., Chi, Y.: Spectral compressed sensing via structured matrix completion. In: Proc. International Conference on Machine Learning (ICML) (2013) · Zbl 1360.94064
[9] Chen, Y., Chi, Y.: Robust spectral compressed sensing via structured matrix completion. preprint (2013, arXiv:1304.8126.) · Zbl 1360.94064
[10] Chi, Y.; Chen, Y., Compressive recovery of 2-D off-grid frequencies (2013), Conf. rec. asilomar conf. signals, systems, and computers: In, Conf. rec. asilomar conf. signals, systems, and computers
[11] Chi, Y.; Scharf, L. L.; Pezeshki, A.; Calderbank, R., Sensitivity to basis mismatch in compressed sensing, IEEE Trans. Signal Process., 59, 5, 2182-2195 (2011) · Zbl 1392.94144
[12] Duarte, M. F.; Baraniuk, R. G., Spectral compressive sensing, Appl. Comput. Harmon. Anal., 35, 1, 111-129 (2013) · Zbl 1336.94016
[13] Fannjiang, A.; Yan, P.; Strohmer, T., Compressed remote sensing of sparse objects, SIAM J. Imag. Sci., 3, 3, 595-618 (2010) · Zbl 1201.45017
[14] Golub, G. H.; Van Loan, C. F., Matrix Computations (1996), Press, Baltimore, MD: John Hopkins Univ, Press, Baltimore, MD · Zbl 0865.65009
[15] Gurbuz, A., McClellan, J., Cevher, V.: A compressive beamforming method. In: Proc. Int. Conf. Acoust., Speech, Signal Process. (ICASSP), pp. 2617-2620. Las Vegas, NV (2008)
[16] Herman, M.A., Needell, D.: Mixed operators in compressed sensing. In: Proc. 44th Annual Conference on Information Sciences and Systems (CISS). Princeton, NJ (2010)
[17] Herman, M. A.; Strohmer, T., High-resolution radar via compressed sensing, IEEE Trans. Signal Process., 57, 6, 2275-2284 (2009) · Zbl 1391.94236
[18] Herman, M.A., Strohmer, T.: General deviants: an analysis of perturbations in compressed sensing. IEEE J. Sel. Top. Sign. Proces.: Special Issue on Compressive Sens. 4(2), 342-349 (2010)
[19] Hua, Y., Estimating two-dimensional frequencies by matrix enhancement and matrix pencil, IEEE Trans. Signal Process., 40, 9, 2267-2280 (1992) · Zbl 0850.93782
[20] Karim, H.; Viberg, M., Two decades of array signal processing research: the parametric approach, IEEE Signal Process. Mag., 13, 4, 67-94 (1996)
[21] Klemm, R., Space-Time Adaptive Processing (1998), UK: IEEE Press, UK
[22] McWhorter, L. T.; Scharf, L. L., Cramer-Rao bounds for deterministic modal analysis, IEEE Trans. Signal Process., 41, 5, 1847-1862 (1993) · Zbl 0775.93214
[23] Mullis, C.T., Scharf, L.L.: Quadratic estimators of the power spectrum. In: Haykin, S. (ed.) Advances in Spectrum Estimation, vol. 1, chap. 1, pp. 1-57. Prentice Hall, Englewood Cliffs, NJ (1990)
[24] Needell, D.; Tropp, J., CoSaMP: Iterative signal recovery from incomplete and inaccurate samples, Appl. Comput. Harmon. Anal., 26, 301-321 (2008) · Zbl 1163.94003
[25] Needell, D.; Vershynin, R., Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit, Found. Comput. Math., 9, 317-334 (2009) · Zbl 1264.94121
[26] Needell, D.; Vershynin, R., Signal recovery from inaccurate and incomplete measurements via regularized orthogonal matching pursuit, IEEE J. Sel. Top. Sign. Proces., 4, 2, 310-316 (2010)
[27] Pezeshki, A.; Veen, B. D.V.; Scharf, L. L.; Cox, H.; Lundberg, M., Eigenvalue beamforming using a generalized sidelobe canceller and subset selection, IEEE Trans. Signal Process., 56, 5, 1954-1967 (2008) · Zbl 1390.94364
[28] Scharf, L. L., Statistical Signal Processing (1991), MA: Addison-Wesley, MA · Zbl 1130.62303
[29] Scharf, L. L.; Chong, E. K.P.; Pezeshki, A.; Luo, J., Sensitivity considerations in compressed sensing (2011), Conf. Rec. Forty-fifth Asilomar Conf. Signals, Syst. Pacific Grove, CA: In, Conf. Rec. Forty-fifth Asilomar Conf. Signals, Syst. Pacific Grove, CA
[30] Scharf, L. L.; Friedlander, B., Matched subspace detectors, IEEE Trans. Signal Process., 42, 8, 2146-2157 (1994) · Zbl 1290.65044
[31] Tang, G., Bhaskar, B.N., Shah, P., Recht, B.: Compressed sensing off the grid. preprint (Jul. 2012, arxiv:1207.6053.) · Zbl 1364.94168
[32] Trees, H. L.V.; Bell, K. L., Bayesian Bounds for Parameter Estimation and Nonlinear Filtering/Tracking (2007), New York: IEEE Press, New York · Zbl 1266.62022
[33] Tropp, J.A., Gilbert, A.C.: Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory 53(12) (1992) · Zbl 1288.94022
[34] Tufts, D. W.; Kumaresan, R., Estimation of frequencies of multiple sinusoids: making linear prediction perform like maximum likelihood, Proc. IEEE., 70, 975-989 (1982)
[35] Tufts, D. W.; Kumaresan, R., Singular value decomposition and improved frequency estimation using linear prediction, IEEE Trans. Acoust. Speech Signal Process., 30, 4, 671-675 (1982)
[36] Van Trees, H. L., Optimum Array Processing (2002), New York: Wiley Interscience, New York
[37] Ward, J.: Maximum likelihood angle and velocity estimation with space-time adaptive processing radar. In: Conf. Rec. 1996 Asilomar Conf. Signals, Systs., Comput., pp. 1265-1267. Pacific Grove, CA (1996)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.