×

Coding accuracy is not fully determined by the neuronal model. (English) Zbl 1414.92100

Summary: It is automatically assumed that the accuracy with which a stimulus can be decoded is entirely determined by the properties of the neuronal system. We challenge this perspective by showing that the identification of pure tone intensities in an auditory nerve fiber depends on both the stochastic response model and the arbitrarily chosen stimulus units. We expose an apparently paradoxical situation in which it is impossible to decide whether loud or quiet tones are encoded more precisely. Our conclusion reaches beyond the topic of auditory neuroscience, however, as we show that the choice of stimulus scale is an integral part of the neural coding problem and not just a matter of convenience.

MSC:

92C20 Neural biology
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Barlow, H. B. (1961). Possible principles underlying the transformation of sensory messages. In W. Rosenblith (Ed.), Sensory communication (pp. 217-234). Cambridge, MA: MIT Press.
[2] Bethge, M., Rotermund, D., & Pawelzik, K. (2002). Optimal short-term population coding: When Fisher information fails. Neural Comput., 14(10), 2317-2351. , · Zbl 1019.68098
[3] Brunel, N., & Nadal, J.-P. (1998). Mutual information, Fisher information, and population coding. Neural Comput., 10(7), 1731-1757. ,
[4] Dayan, P., & Abbott, L. F. (1999). The effect of correlated variability on the accuracy of a population code. Neural Comput., 11(1), 91-101. ,
[5] Dayan, P., & Abbott, L. F. (2001). Theoretical neuroscience: Computational and mathematical modeling of neural systems. Cambridge, MA: MIT Press. · Zbl 1051.92010
[6] Greenwood, P. E., Ward, L. M., Russell, D. F., Neiman, A., & Moss, F. (2000). Stochastic resonance enhances the electrosensory information available to paddlefish for prey capture. Phys. Rev. Lett., 84(20), 4773-4776. ,
[7] Harper, N. S., & McAlpine, D. (2004). Optimal neural population coding of an auditory spatial cue. Nature, 430(7000), 682-686. ,
[8] Javel, E., & Viemeister, N. F. (2000). Stochastic properties of cat auditory nerve responses to electric and acoustic stimuli and application to intensity discrimination. J. Acoust. Soc. Am., 107(2), 908-921. ,
[9] Kostal, L. (2010). Information capacity in the weak-signal approximation. Phys. Rev. E, 82, 026115. ,
[10] Kostal, L., Lansky, P., & McDonnell, M. D. (2013). Metabolic cost of neuronal information in an empirical stimulus-response model. Biol. Cybern., 107(3), 355-365. , · Zbl 1267.92027
[11] Krueger, L. E. (1989). Reconciling Fechner and Stevens: Toward a unified psychophysical law. Behav. Brain Sci., 12, 251-320. ,
[12] Kullback, S. (1968). Information theory and statistics. New York: Dover. · Zbl 0088.10406
[13] Lehky, S. R., Sereno, M. E., & Sereno, A. B. (2013). Population coding and the labeling problem: Extrinsic versus intrinsic representations. Neural Comput., 25(9), 2235-2264. , · Zbl 1448.92045
[14] Lehmann, E. L., & Casella, G. (1998). Theory of point estimation. New York: Springer-Verlag. · Zbl 0916.62017
[15] Nizami, L. (2002). Estimating auditory neuronal dynamic range using a fitted function. Hearing Res., 167, 13-27. ,
[16] Raichel, D. R. (2006). The science and applications of acoustics. New York: Springer.
[17] Riesz, R. R. (1928). Differential intensity sensitivity of the ear for pure tones. Phys. Rev., 31, 867-875. ,
[18] Rospars, J.-P., Lansky, P., Chaput, M., & Viret, P. (2008). Competitive and noncompetitive odorant interaction in the early neural coding of odorant mixtures. J. Neurosci., 28, 2659-2666. ,
[19] Sachs, M. B., & Abbas, P. J. (1976). Phenomenological model for two-tone suppression. J. Acoust. Soc. Am., 60, 1157-1163. ,
[20] Seriès, P., Latham, P. E., & Pouget, A. (2004). Tuning curve sharpening for orientation selectivity: Coding efficiency and the impact of correlations. Nat. Neurosci., 7(10), 1129-1135. ,
[21] Seung, H. S., & Sompolinsky, H. (1993). Simple models for reading neuronal population codes. Proc. Natl. Acad. Sci. USA, 90(10), 749-753.
[22] Stein, R. B., Gossen, E. R., & Jones, K. E. (2005). Neuronal variability: Noise or part of the signal?Nat. Rev. Neurosci., 6(5), 389-397. ,
[23] Teich, M. C., & Khanna, S. M. (1985). Pulse-number distribution for the neural spike train in the cat’s auditory nerve. J. Acoustic. Soc. Am., 77, 1110-1128. ,
[24] Tuckwell, H. C. (1988). Introduction to theoretical neurobiology, Vol. 2. Cambridge: Cambridge University Press. , · Zbl 0647.92009
[25] van Trees, H. L., & Bell, K. L. (2013). Detection, estimation and modulation theory, part I. Hoboken, NJ: Wiley. · Zbl 1266.94001
[26] Winslow, R. L., & Sachs, M. B. (1988). Single-tone intensity discrimination based on auditory-nerve rate responses in background of quiet, noise, and with stimulation of the crossed olivocochlear bundle. Hearing Res., 35, 165-190. ,
[27] Yarrow, S., Challis, E., & Seriès, P. (2012). Fisher and Shannon information in finite neural populations. Neural Comput., 24(7), 1740-1780. , · Zbl 1247.92006
[28] Zhang, K., & Sejnowski, T. J. (1999). Neuronal tuning: To sharpen or broaden?Neural Comput., 11(1), 75-84. ,
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.