×

Cramér-Rao lower bound in nonlinear filtering problems under noises and measurement errors dependent on estimated parameters. (English. Russian original) Zbl 1338.93379

Autom. Remote Control 77, No. 1, 81-105 (2016); translation from Avtom. Telemekh. 2016, No. 1, 104-133 (2016).
Summary: This paper derives recurrent expressions for the maximum attainable estimation accuracy calculated using the Cramér-Rao inequality (Cramér-Rao lower bound) in the discretetime nonlinear filtering problem under conditions when generating noises in the state vector and measurement error equations depend on estimated parameters and the state vector incorporates a constant subvector. We establish a connection to similar expressions in the case of no such dependence. An example illustrates application of the obtained algorithms to lowerbound accuracy calculation in a parameter estimation problem often arising in navigation data processing within a model described by the sum of a Wiener sequence and discrete-time white noise of an unknown variance.

MSC:

93E11 Filtering in stochastic control theory
93E10 Estimation and detection in stochastic control theory
93E25 Computational methods in stochastic control (MSC2010)
93C10 Nonlinear systems in control theory
93C55 Discrete-time control/observation systems
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Yarlykov, M.S., Statisticheskaya teoriya radionavigatsii (Statistical Theory of Radio Navigation), Moscow: Radio i Svyaz’, 1985.
[2] Yarlykov, M.S. and Mironov, M.A., Markovskaya teoriya otsenivaniya sluchainykh protsessov (Markov Theory of Random Processes Estimation), Moscow: Radio i Svyaz’, 1993. · Zbl 0832.62074
[3] Stepanov, O.A., <Emphasis Type=”Italic“>Primenenie teorii nelineinoi fil’tratsii v zadachakh obrabotki navigatsionnoi informatsii (Application of Nonlinear Filtering Theory in Navigational Data Processing Problems), St. Petersburg: GNTs RF—TsNII “Elektropribor”, 1998.
[4] Dmitriev, S. P.; Stepanov, O. A., Nonlinear Filtering and Navigation, 138-149 (1998)
[5] Bergman, N., Recursive Bayesian Estimation. Navigation and Tracking Applications (1999)
[6] Ivanov, V.M., Stepanov, O.A., and Korenevski, M.L., Monte Carlo Methods for a Special Nonlinear Filtering Problem, Proc. 11th IFAC Int. Workshop Control Applications of Optimization, 2000, vol. 1, pp. 347-353.
[7] Doucet, A., de Freitas, N., and Gordon, N., Sequential Monte Carlo Methods in Practice, New York: Springer-Verlag, 2001. · Zbl 0967.00022
[8] Rozov, A.K., Nelineinaya fil’tratsiya signalov (Nonlinear Filtering of Signals), St. Petersburg: Politekhnika, 2002, 2nd ed.
[9] Gustafsson, F., Bergman, N., Forssel, U., et al., Particle Filters for Positioning, Navigation and Tracking, IEEE Trans. Signal Process., 2002, vol. 50, no. 2, pp. 425-437.
[10] Ristic, B., Arulampalam, S., and Gordon, N., Beyond the Kalman Filter. Particle Filters for Tracking Applications, London: Artech House, 2004. · Zbl 1092.93041
[11] Dmitriev, S.P. and Stepanov, O.A., Multiple-alternative Filtering in Navigational Data Processing Problems, Radiotekhn., 2004, no. 7, pp. 11-17.
[12] Daum, F., Nonlinear Filters: Beyond the Kalman Filter, IEEE Aerospace Electron. Syst., 2005, vol. 8, pp. 57-71.
[13] Bar-Shalom, Y. and Li, X.R., Estimation and Tracking: Principles, Techniques, and Software, Norwood: Artech House, 1993. Translated under the title Traektornaya obrabotka. Printsipy, sposoby i algoritmy, tom 1-2, Moscow: Gos. Tekhn. Univ. im. Baumana, 2011.
[14] Bar-Shalom, Y., Willett, P.K., and Tian, X., Tracking and Data Fusion: A Handbook of Algorithms, Storrs: YBS, 2011.
[15] Stepanov, O.A., Osnovy teorii otsenivaniya s prilozheniyami k zadacham obrabotki navigatsionnoi informatsii. Chast’ 1. Vvedenie v teoriyu otsenivaniya (Foundations of Estimation Theory with Application to Navigation Data Processing Problems. Part 1. An Introduction to Estimation Theory), St. Petersburg: GNTs RF—TsNII “Elektropribor,” ITMO, 2010, 2012.
[16] Toropov, A.B. and Stepanov, O.A., Usage of Sequential Monte Carlo Methods in the Correlation- Extremal Navigation Problem, Izv. Vyssh. Uchebn. Zaved., Priborostr., 2010, vol. 53, no. 10, pp. 49-54.
[17] Parakhnevich, A.V., Solonar, A.S., and Gorshkov, S.A., Approaches to Significant Probability Density Choice in Particle Filters, Dokl. Beloruss. Gos. Univ. Informatik. Radioelektr., 2012, no. 4 (66), pp. 68-74.
[18] Kosachev, I.M., A Methodology of High-Accuracy Nonlinear Filtering of Random Processes in Stochastic Dynamic Fixed-Structure Systems, Vestn. Voenn. Akad. Resp. Belarus’, 2014, no. 4 (66), pp. 125-160.
[19] Snyder, C., Bengtsson, T., Bickel, P., et al., Obstacles to High-Dimensional Particle Filtering, Monthly Weather Rev., 2008, vol. 136, no. 12, pp. 4629-4640.
[20] Berkovskii, N.A. and Stepanov, O.A., Error of Calculating the Optimal Bayesian Estimate Using the Monte Carlo Method in Nonlinear Problems, J. Comp. Syst. Sci. Int., 2013, vol. 52, no. 3, pp. 342-353. · Zbl 1278.93245
[21] Cramér, H., Mathematical Methods of Statistics, Princeton: Princeton Univ. Press, 1946. Translated under the title Matematicheskie metody statistiki, Kolmogorov, A.N., Ed., Moscow: Inostrannaya Literatura, 1948.
[22] Van Trees, H.L., Detection, Estimation, and Modulation Theory, Part 1, New York: Wiley, 1968. Translated under the title Teoriya obnaruzheniya, otsenok i modulyatsii. Tom 1. Teoriya obnaruzheniya, otsenok i lineinoi modulyatsii, Moscow: Sovetskoe Radio, 1972.
[23] Galdos, J.I., A Cramer-Rao Bound for Multidimensional Discrete-Time Dynamical Systems, IEEE Trans. Automat. Control, 1980, vol. AC-25, no. 1, pp. 117-119. · Zbl 0426.93053
[24] Koshaev, D.A. and Stepanov, O.A., Application of the Rao-Cramer Inequality in Problems of Nonlinear Estimation, J. Comp. Syst. Sci. Int., 1997, vol. 36, no. 2, pp. 220-227. · Zbl 0912.93066
[25] Tichavsky, P., Muravchik, C., and Nehorai, A., Posterior Cramer-Rao Bounds for Discrete-Time Nonlinear Filtering, IEEE Trans. Signal Process., 1998, no. 46, pp. 1386-1398.
[26] Simandl, M., Kralovec, J., and Tichavsky, P., Filtering, Predictive and Smoothing Cramer-Rao Bounds for Discrete-Time Nonlinear Dynamic Systems, Automatica, 2001, no. 37, pp. 1703-1716. · Zbl 1031.93146
[27] Van Trees, H.L. and Bell, K.L., Bayesian Bounds for Parameter Estimation and Nonlinear Filtering/Tracking, San-Francisco: Wiley-IEEE Press, 2007. · Zbl 1266.62022
[28] Stepanov, O. A., Proceeding Cramer-Rao Bounds for Special Nonlinear Filtering Problems (1999)
[29] Bergman, N., Poster Cramer-Rao Bounds for Sequential Estimation. See 1999 [7, pp. 321-338]. · Zbl 1056.93569
[30] Batista, P.; Silvestre, C.; Oliveira, P., Preliminary Results on the Estimation Performance of Single Range Source Localization, 421-424 (2013)
[31] Koshaev, D.A., A Comparison of Lower Bounds of Accuracy in Problems of Nonlinear Estimation, J. Comp. Syst. Sci. Int., 1998, vol. 37, no. 2, pp. 222-224. · Zbl 1092.93599
[32] Dmitriev, S.P. and Sokolov, A.I., Frequency Shift Estimation in a Doppler Log via Identification of the Received Signal Model, Giroskop. Navigats., 2006, no. 1, pp. 21-29.
[33] Stepanov, O. A.; Motorin, A. V., A Comparison of Identification Methods for the Error Models of Sensors Based on Allan Variations and Nonlinear Filtering Algorithms (2014)
[34] Stepanov, O. A.; Vasilyev, V. A.; Dolnakova, A. S., Cramer-Rao Lower Bound for Parameters of Random Processes in Navigation Data Processing, 1214-1221 (2013)
[35] Stepanov, O. A.; Dolnakova, A. S.; Sokolov, A. I., Analysis of Potential Estimation Accuracy of Random Process Parameters in Navigation Data Processing Problems, 3730-3740 (2014), Moscow
[36] Stepanov, O.A., Priblizhennye metody analiza potentsial’noi tochnosti v nelineinykh navigatsionnykh zadachakh (Approximate Analysis Methods for Potential Accuracy in Nonlinear Navigation Problems), Leningrad: Tsentr. Nauchno-Issled. Inst. Rumb, 1986.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.