×

Stimulus reference frame and neural coding precision. (English) Zbl 1354.92014

Summary: Any particular stimulus intensity, as a physical quantity, can be equivalently described in different unit systems. Researchers automatically expect the methodology and the inference obtained about the neural coding precision to be independent from such a subjective choice. We show, however, that the Fisher information, which is arguably the most popular measure of coding accuracy, may yield incompatible and in fact arbitrary results just by re-evaluating the identical stimulation scenario in transformed units. We consider only regular scale transformations given by strictly increasing and differentiable functions. On one hand, our results point to a potentially problematic aspect of the Fisher information application. On the other hand, we speculate that the unwanted transformation covariance may be removed by considering the psychophysical scale based on the ideal observer paradigm. We show that such scale implies constant Fisher information and that the matching stimulus distribution is given by the Jeffreys prior. The psychophysical perspective thus provides a novel justification for the special role of the Jeffreys prior in neural coding theory.

MSC:

92C20 Neural biology
62P10 Applications of statistics to biology and medical sciences; meta analysis
62F15 Bayesian inference
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Atick, J. J., Could information theory provide an ecological theory of sensory processing?, Network Computation in Neural Systems, 3, 2, 213-251 (1992) · Zbl 0762.92007
[2] Barlow, H. B., Possible principles underlying the transformation of sensory messages, (Rosenblith, W., Sensory Communication (1961), MIT Press: MIT Press Cambridge), 217-234
[3] Bernardo, J. M., Reference posterior distributions for Bayesian inference, Journal of the Royal Statistical Society B, 41, 113-147 (1979) · Zbl 0428.62004
[4] Bethge, M.; Rotermund, D.; Pawelzik, K., Optimal short-term population coding: when Fisher information fails, Neural Computation, 14, 10, 2317-2351 (2002) · Zbl 1019.68098
[5] Bialek, W.; Owen, W. G., Temporal filtering in retinal bipolar cells. elements of an optimal computation?, Biophysical Journal, 58, 5, 1227-1233 (1990)
[6] Brown, L. D.; Gajek, L., Information inequalities for the Bayes risk, The Annals of Statistics, 18, 4, 1578-1594 (1990) · Zbl 0722.62003
[7] Brunel, N.; Nadal, J.-P., Mutual information, Fisher information, and population coding, Neural Computation, 10, 7, 1731-1757 (1998)
[8] Dahmen, J. C.; Keating, P.; Nodal, F. R.; Schulz, A. L.; King, A. J., Adaptation to stimulus statistics in the perception and neural representation of auditory space, Neuron, 66, 937-948 (2010)
[9] Dayan, P.; Abbott, L. F., The effect of correlated variability on the accuracy of a population code, Neural Computation, 11, 1, 91-101 (1999)
[10] Dayan, P.; Abbott, L. F., Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems (2001), MIT Press · Zbl 1051.92010
[11] Dean, I.; Harper, N. S.; McAlpine, D., Neural population coding of sound level adapts to stimulus statistics, Nature Neuroscience, 8, 12, 1684-1689 (2005)
[12] Durant, S.; Clifford, C. W.G.; Crowder, N. A.; Price, N. S.C.; Ibbotson, M. R., Characterizing contrast adaptation in a population of cat primary visual cortical neurons using Fisher information, Journal of the Optical Society of America A, 24, 6, 1529-1537 (2007)
[13] Dzhafarov, E. N.; Colonius, H., The Fechnerian idea, The American Journal of Psychology, 124, 2, 127-140 (2011)
[14] Fedorov, V. V., Theory of Optimal Experiments (1972), Academic Press: Academic Press London, UK
[15] Garcia-Lazaro, J. A.; Ho, S. S.M.; Nair, A.; Schnupp, J. W.H., Shifting and scaling adaptation to dynamic stimuli in somatosensory cortex, European Journal of Neuroscience, 26, 2359-2368 (2007)
[16] Gescheider, G. A., Psychophysics: The Fundamentals (1997), Erlbaum: Erlbaum New Jersey, Mahwah
[17] Greenwood, P. E.; Lansky, P., Optimal signal estimation in neuronal models, Neural Computation, 17, 10, 2240-2257 (2005) · Zbl 1079.62112
[18] Greenwood, P. E.; Lansky, P., Optimum signal in a simple neuronal model with signal-dependent noise, Biological Cybernetics, 92, 3, 199-205 (2005) · Zbl 1101.92009
[19] Greenwood, P. E.; Ward, L. M.; Russell, D. F.; Neiman, A.; Moss, F., Stochastic resonance enhances the electrosensory information available to paddlefish for prey capture, Physical Review Letters, 84, 20, 4773-4776 (2000)
[20] Greenwood, P. E.; Ward, L. M.; Wefelmeyer, W., Statistical analysis of stochastic resonance in a simple setting, Physical Review E, 60, 4, 4687-4695 (1999)
[21] Harper, N. S.; McAlpine, D., Optimal neural population coding of an auditory spatial cue, Nature, 430, 7000, 682-686 (2004)
[22] Hornstein, E. P.; O’Carroll, D. C.; Anderson, J. C.; Laughlin, S. B., Sexual dimorphism matches photoreceptor performance to behavioural requirements, Proceedings of the Biological Sciences, 267, 1457, 2111-2117 (2000)
[23] Ibragimov, L. A.; Has’minskii, R. Z., Statistical Estimation-Asymptotic Theory (1981), Springer-Verlag: Springer-Verlag New York
[24] Jeffreys, H., An invariant form for the prior probability in estimation problems, Proceedings of the Royal Society A, 453-461 (1946) · Zbl 0063.03050
[25] Jenison, R. L.; Reale, R. A., Likelihood approaches to sensory coding in auditory cortex, Network Computation in Neural Systems, 14, 83-102 (2003)
[26] Kass, R. E.; Wasserman, L., The selection of prior distributions by formal rules, Journal of the American Statistical Association, 91, 435, 1343-1370 (1996) · Zbl 0884.62007
[27] Kostal, L.; Lansky, P., Information capacity and its approximations under metabolic cost in a simple homogeneous population of neurons, BioSystems, 112, 265-275 (2013)
[28] Kostal, L.; Lansky, P., Coding accuracy is not fully determined by the neuronal model, Neural Computation, 27, 5, 1051-1057 (2015) · Zbl 1414.92100
[30] Kostal, L.; Lansky, P.; McDonnell, M. D., Metabolic cost of neuronal information in an empirical stimulus-response model, Biological Cybernetics, 107, 3, 355-365 (2013) · Zbl 1267.92027
[31] Kostal, L.; Lansky, P.; Pilarski, S., Performance breakdown in optimal stimulus decoding, Journal of Neural Engineering, 12, 3, Article 036012 pp. (2015)
[32] Kostal, L.; Lansky, P.; Rospars, J.-P., Efficient olfactory coding in the pheromone receptor neuron of a moth, PLoS Computational Biology, 4, e1000053 (2008)
[33] Lansky, P.; Pokora, O.; Rospars, J.-P., Classification of stimuli based on stimulus-response curves and their variability, Brain Research, 1225, 57-66 (2008)
[34] Laughlin, S. B., A simple coding procedure enhances a neuron’s information capacity, Zeitschrift für Naturforschung, 36, 9-10, 910-912 (1981)
[35] Lehmann, E. L.; Casella, G., Theory of Point Estimation (1998), Springer Verlag: Springer Verlag New York · Zbl 0916.62017
[36] Levakova, M., Effect of spontaneous activity on stimulus detection in a simple neuronal model, Mathematical Biosciences and Engineering, 13, 3, 551-568 (2016) · Zbl 1348.62069
[37] Lewicki, M. S., Efficient coding of natural sounds, Nature Neuroscience, 5, 4, 356-363 (2002)
[38] Maier, J. K.; Hehrmann, P.; Harper, N. S.; Klump, G. M.; Pressnitzer, D.; McAlpine, D., Adaptive coding is constrained to midline locations in a spatial listening task, Journal of Neurophysiology, 108, 1856-1868 (2012)
[39] Masin, S. C., The (Weber’s) law that never was, (Elliot, M. A.; Antonijević, S.; Berthaud, S.; Mulcahy, P.; Bargary, B.; Martyn, C.; Schmid, H., Proceedings of the Twenty-Fifth Annual Meeting of the International Society for Psychophysics (2009), International Society for Psychophysics: International Society for Psychophysics Galway, Ireland), 441-446
[40] McDonnell, M. D.; Stocks, N. G., Maximally informative stimuli and tuning curves for sigmoidal rate-coding neurons and populations, Physical Review Letters, 101, 5, Article 058103 pp. (2008)
[41] Papoulis, A., Probability, Random Variables, and Stochastic Processes (1991), McGraw-Hill: McGraw-Hill New York · Zbl 0191.46704
[42] Paradiso, M. A., A theory for the use of visual orientation information which exploits the columnar structure of striate cortex, Biological Cybernetics, 58, 1, 35-49 (1988)
[43] Pilarski, S.; Pokora, O., On the Cramér-Rao bound applicability and the role of Fisher information in computational neuroscience, BioSystems, 136, 11-22 (2015)
[44] Pitman, E. J.G., Some Basic Theory for Statistical Inference (1979), John Wiley and Sons, Inc.: John Wiley and Sons, Inc. New York · Zbl 0442.62002
[45] Raichel, D. R., The Science and Applications of Acoustics (2006), Springer: Springer New York
[46] Riesz, R. R., Differential intensity sensitivity of the ear for pure tones, Physical Review, 31, 867-875 (1928)
[47] Rospars, J.-P.; Lansky, P.; Chaput, M.; Viret, P., Competitive and noncompetitive odorant interaction in the early neural coding of odorant mixtures, Journal of Neuroscience, 28, 2659-2666 (2008)
[48] Seriès, P.; Latham, P. E.; Pouget, A., Tuning curve sharpening for orientation selectivity: coding efficiency and the impact of correlations, Nature Neuroscience, 7, 10, 1129-1135 (2004)
[49] Seriès, P.; Stocker, A. A.; Simoncelli, E. P., Is the homunculus “aware” of sensory adaptation?, Neural Computation, 21, 12, 3271-3304 (2009) · Zbl 1181.92011
[50] Shadlen, M. N.; Newsome, W. T., The variable discharge of cortical neurons: Implications for connectivity, computation, and information coding, Journal of Neuroscience, 18, 10, 3870-3896 (1998)
[51] Simoncelli, E. P.; Olshausen, B. A., Natural image statistics and neural representation, The Annual Review of Neuroscience, 24, 1193-1216 (2001)
[52] Smith, E. C.; Lewicki, M. S., Efficient auditory coding, Nature, 439, 7079, 978-982 (2006)
[53] Stein, R. B.; Gossen, E. R.; Jones, K. E., Neuronal variability: noise or part of the signal?, Nature Reviews Neuroscience, 6, 5, 389-397 (2005)
[54] Stemmler, M., A single spike suffices: the simplest form of stochastic resonance in model neurons, Networks, 7, 687-716 (1996) · Zbl 0884.92004
[55] Stevens, S. S.; Volkmann, J.; Newman, E. B., A scale for the measurement of the psychological magnitude pitch, The Journal of the Acoustical Society of America, 8, 3, 185-190 (1937)
[56] Sun, J. Z.; Wang, G. I.; Goyal, V. K.; Varshney, L. R., A framework for Bayesian optimality of psychophysical laws, Journal of Mathematical Psychology, 56, 495-501 (2012)
[57] Tzvetanov, T.; Womelsdorf, T., Predicting human perceptual decisions by decoding neuronal information profiles, Biological Cybernetics, 98, 397-411 (2008) · Zbl 1145.92308
[58] van Trees, H. L.; Bell, K. L., Detection, Estimation and Modulation Theory, Part I (2013), John Wiley and Sons: John Wiley and Sons New York · Zbl 1266.94001
[59] Wainrib, G.; Thieullen, M.; Pakdaman, K., Intrinsic variability of latency to first-spike, Biological Cybernetics, 103, 43-56 (2010) · Zbl 1248.92017
[60] Wark, B.; Lundstrom, B. N.; Fairhall, A., Sensory adaptation, Current Opinion in Neurobiology, 17, 423-429 (2007)
[61] Watkins, P. V.; Barbour, D. L., Specialized neuronal adaptation for preserving input sensitivity, Nature Neuroscience, 11, 11, 1259-1261 (2008)
[62] Watkins, P. V.; Barbour, D. L., Level-tuned neurons in primary auditory cortex adapt differently to loud versus soft sounds, Cerebral Cortex, 21, 1, 178-190 (2011)
[63] Weber, E. H., De Pulsu, Resorptione, Auditu et Tactu. Annotationes Anatomicae et Physiologicae (1834), Koehler: Koehler Leipzig
[64] Wei, X.; Stocker, A. A., A Bayesian observer model constrained by efficient coding can explain ‘anti-Bayesian’ percepts, Nature Neuroscience, 18, 10, 1509-1517 (2015)
[65] Wen, B.; Wang, G. I.; Dean, I.; Delgutte, B., Dynamic range adaptation to sound level statistics in the auditory nerve, Journal of Neuroscience, 29, 44, 13797-13808 (2009)
[66] Wilke, S. D.; Eurich, C. W., Representational accuracy of stochastic neural populations, Neural Computation, 14, 1, 155-189 (2002) · Zbl 0988.92010
[67] Winslow, R. L.; Sachs, M. B., Single-tone intensity discrimination based on auditory-nerve rate responses in background of quiet, noise, and with stimulation of the crossed olivocochlear bundle, Hearing Research, 35, 165-190 (1988)
[68] Yarrow, S.; Challis, E.; Seriès, P., Fisher and Shannon information in finite neural populations, Neural Computation, 24, 7, 1740-1780 (2012) · Zbl 1247.92006
[69] Zhang, K.; Ginzburg, I.; McNaughton, B. L.; Sejnowski, T. J., Interpreting neuronal population activity by reconstruction: unified framework with application to hippocampal place cells, Journal of Neurophysiology, 79, 2, 1017-1044 (1998)
[70] Zhang, K.; Sejnowski, T. J., Neuronal tuning: to sharpen or broaden?, Neural Computation, 11, 1, 75-84 (1999)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.