×

An iteration-free semi-Lagrangian meshless method for Burgers’ equations. (English) Zbl 1521.65086

MSC:

65M25 Numerical aspects of the method of characteristics for initial value and initial-boundary value problems involving PDEs
65D32 Numerical quadrature and cubature formulas
65M75 Probabilistic methods, particle methods, etc. for initial value and initial-boundary value problems involving PDEs
35Q53 KdV equations (Korteweg-de Vries equations)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Zhang, X. H.; Ouyang, J.; Zhang, L., Element-free characteristic Galerkin method for Burgers’ equation, Eng Anal Bound Elem, 33, 3, 356-362 (2009) · Zbl 1244.76097
[2] Wiin-Nielsen, A., On the application of trajectory methods in numerical forecasting, Tellus, 11, 2, 180-196 (1959)
[3] Sawyer, J. S., A semi-Lagrangian method of solving the vorticity advection equation, Tellus, 15, 4, 336-342 (1963)
[4] Xiu, D.; Karniadakis, G. E., A semi-Lagrangian high-order method for Navier-Stokes equations, J Comput Phys, 172, 2, 658-684 (2001) · Zbl 1028.76026
[5] Russo, G.; Yun, S.-B., Convergence of a semi-Lagrangian scheme for the ellipsoidal BGK model of the Boltzmann equation, SIAM J Numer Anal, 56, 6, 3580-3610 (2018) · Zbl 1458.35297
[6] Yang, Y.; Cai, X.; Qiu, J., Optimal convergence and superconvergence of semi-Lagrangian discontinuous Galerkin methods for linear convection equations in one space dimension, Math Comput, 89, 325, 2113-2139 (2020) · Zbl 1442.65216
[7] Zerroukat, M.; Wood, N.; Staniforth, A., A monotonic and positive-definite filter for a Semi-Lagrangian Inherently Conserving and Efficient (SLICE) scheme, Q J R Meteorol Soc, 131, 611, 2923-2936 (2005)
[8] Baek, J.; Chen, J.-S.; Zhou, G.; Arnett, K. P.; Hillman, M. C.; Hegemier, G.; Hardesty, S., A semi-Lagrangian reproducing kernel particle method with particle-based shock algorithm for explosive welding simulation, Comput Mech, 67, 6, 1601-1627 (2021), identifier: 2008 · Zbl 1467.74097
[9] Wei, H.; Chen, J.-S.; Beckwith, F.; Baek, J., A naturally stabilized semi-Lagrangian meshfree formulation for multiphase porous media with application to landslide modeling, J Eng Mech, 146, 4, Article 04020012 pp. (2020)
[10] Liu, J.; Zhang, S.; Dai, W.; Xu, D.; Bai, M.; Li, Y., Performance comparison between semi-Lagrangian and Eulerian numerical solutions for two-dimensional surface flows in basin irrigation, J Irrig Drain Eng, 147, 6, Article 04021015 pp. (2021)
[11] Rosatti, G.; Chemotti, R.; Bonaventura, L., High order interpolation methods for semi-Lagrangian models of mobile-bed hydrodynamics on Cartesian grids with cut cells, Int J Numer Methods Fluids, 47, 10-11, 1269-1275 (2005) · Zbl 1155.76383
[12] Sun, Z.; Xiao, F., A semi-Lagrangian multi-moment finite volume method with fourth-order WENO projection, Int J Numer Methods Fluids, 83, 4, 351-375 (2017)
[13] Allievi, A.; Bermejo, R., A generalized particle search-locate algorithm for arbitrary grids, J Comput Phys, 132, 2, 157-166 (1997) · Zbl 0891.65125
[14] Belytschko, T.; Krongauz, Y.; Organ, D.; Fleming, M.; Krysl, P., Meshless methods: An overview and recent developments, Comput Methods Appl Mech, 139, 1, 3-47 (1996) · Zbl 0891.73075
[15] Lancaster, P.; Salkauskas, K., Surfaces generated by moving least squares methods, Math Comput, 37, 155, 141-158 (1981) · Zbl 0469.41005
[16] Lucy, L. B., A numerical approach to the testing of the fission hypothesis, Astron J, 82, 1013-1024 (1977)
[17] Xiong, Q.; Deng, L.; Wang, W.; Ge, W., SPH method for two-fluid modeling of particle-fluid fluidization, Chem Eng Sci, 66, 9, 1859-1865 (2011)
[18] Khayyer, A.; Gotoh, H., Enhancement of performance and stability of MPS mesh-free particle method for multiphase flows characterized by high density ratios, J Comput Phys, 242, 211-233 (2013) · Zbl 1314.76036
[19] Wang, X.; Liu, Y.; Ouyang, J., A meshfree collocation method based on moving Taylor polynomial approximation for high order partial differential equations, Eng Anal Bound Elem, 116, 77-92 (2020) · Zbl 1464.65216
[20] Nayroles, B.; Touzot, G.; Villon, P., Generalizing the finite element method: Diffuse approximation and diffuse elements, Comput Mech, 10, 5, 307-318 (1992) · Zbl 0764.65068
[21] Belytschko, T.; Lu, Y. Y.; Gu, L., Element-free Galerkin methods, Internat J Numer Methods Engrg, 37, 2, 229-256 (1994) · Zbl 0796.73077
[22] Wang, X.; Wang, H.; Liu, Y., A semi-Lagrangian meshfree Galerkin method for convection-dominated partial differential equations, Comput Methods Appl Mech, 391, Article 114546 pp. (2022) · Zbl 1507.76125
[23] Xiu, D.; Karniadakis, G. E., A semi-Lagrangian high-order method for Navier-Stokes equations, J Compt Phys, 172, 2, 658-684 (2001) · Zbl 1028.76026
[24] Crouseilles, N.; Mehrenberger, M.; Sonnendrücker, E., Conservative semi-Lagrangian schemes for Vlasov equations, J Comput Phys, 229, 6, 1927-1953 (2010) · Zbl 1303.76103
[25] Mimeau, C.; Marié, S.; Mortazavi, I., A comparison of semi-Lagrangian vortex method and lattice Boltzmann method for incompressible flows, Comput & Fluids, 224, Article 104946 pp. (2021) · Zbl 1521.76620
[26] Filbet, F.; Prouveur, C., High order time discretization for backward semi-Lagrangian methods, J Comput Appl Math, 303, 171-188 (2016) · Zbl 1334.65149
[27] Rosatti, G.; Cesari, D.; Bonaventura, L., Semi-implicit, semi-Lagrangian modelling for environmental problems on staggered Cartesian grids with cut cells, J Comput Phys, 204, 1, 353-377 (2005) · Zbl 1143.76484
[28] Mortezazadeh, M.; Wang, L., An adaptive time-stepping semi-Lagrangian method for incompressible flows, Numer Heat Transfer B, 75, 1, 1-18 (2019)
[29] Kim, P.; Piao, X.; Kim, S. D., An error corrected Euler method for solving stiff problems based on Chebyshev collocation, SIAM J Numer Anal, 49, 6, 2211-2230 (2011) · Zbl 1273.65095
[30] Piao, X.; Bu, S.; Bak, S.; Kim, P., An iteration free backward semi-Lagrangian scheme for solving incompressible Navier-Stokes equations, J Comput Phys, 283, 189-204 (2015) · Zbl 1351.76179
[31] Piao, X.; Kim, P.; Kim, D., One-step l \(( \alpha )\)-stable temporal integration for the backward semi-Lagrangian scheme and its application in guiding center problems, J Comput Phys, 366, 327-340 (2018) · Zbl 1406.65098
[32] Bu, S.; Bak, S., Simulation of advection-diffusion-dispersion equations based on a composite time discretization scheme, Adv Differ Equ-Ny, 2020, 1, 1-19 (2020) · Zbl 1482.65138
[33] Wang, X.; Ouyang, J.; Feng, Z., Local Kronecker delta property of the MLS approximation and feasibility of directly imposing the essential boundary conditions for the EFG method, Eng Anal Bound Elem, 37, 7, 1021-1042 (2013) · Zbl 1287.65110
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.