×

Synnatzschke’s theorem for polynomials. (English) Zbl 1470.46070

From the authors’ abstract: “We establish a multilinear generalisation of Synnatzschke’s Theorem [J. Synnatzschke, Vestn. Leningr. Univ., Mat. Mekh. Astron. 1972, No. 1, 60–69 (1972; Zbl 0234.47035)] for regular operators on Banach lattices, with the Arens adjoint taking the place of the transpose.”
Recall that a linear operator \(T:E \to F\), between Banach lattices with \(F\) Dedekind-complete, is said to be {\em regular} if \(T\) is the difference of two positive operators. Synnatzschke’s theorem states that if \(T:E \to F\) is a regular operator, then the transpose \(T':F' \to E'\) is order continuous and its restriction to the order continuous dual of \(F$, $F'_n\), satisfies \(|T'| = |T|'\).
Here, the focus is on regular multilinear maps \(A:E_1 \times \cdots \times E_m \to G\) from Banach lattices \(E_j\) to a Dedekind complete Banach lattice \(G\). (A {\em regular} multilinear mapping is defined to be a difference of two positive multilinear maps.) The authors adopt the method of R. Arens [Proc. Am. Math. Soc. 2, 839–848 (1951; Zbl 0044.32601)] to construct the extension of \(A\) to \(A^{*(m+1)}\) on \((E'_1)'_n \times \cdots \times (E'_m)'_n\). Their main result is the following analogy of Synnatzschke’s theorem: \(|A^{*(m+1)}| = |A|^{*(m+1)}\). Among a number of interesting consequences is a version of the Davie-Gamelin theorem for polynomials [A. M. Davie and T. W. Gamelin, Proc. Am. Math. Soc. 106, No. 2, 351–356 (1989; Zbl 0683.46037)].

MSC:

46G25 (Spaces of) multilinear mappings, polynomials
46B42 Banach lattices
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abramovich, Yuri, Sirotkin, Gleb: On order convergence of nets. Posit. Int., J. Devot. Theory Appl. Posit. Anal. 9(3), 287-292 (2005) · Zbl 1110.46002
[2] Aliprantis, C.D., Burkinshaw, O.: Positive Operators. Pure and Applied Mathematics, vol. 119. Academic Press Inc, Orlando (1985) · Zbl 0608.47039
[3] Arens, R., The adjoint of a bilinear operation, Proc. Am. Math. Soc., 2, 839-848 (1951) · Zbl 0044.32601 · doi:10.1090/S0002-9939-1951-0045941-1
[4] Aron, RM; Berner, PD, A Hahn-Banach extension theorem for analytic mappings, Bull. Soc. Math. Fr., 106, 1, 3-24 (1978) · Zbl 0378.46043 · doi:10.24033/bsmf.1862
[5] Aron, RM; Cole, BJ; Gamelin, TW, Spectra of algebras of analytic functions on a Banach space, J. Reine Angew. Math., 415, 51-93 (1991) · Zbl 0717.46031
[6] Bernau, SJ; Huijsmans, CB, The order bidual of almost f-algebras and d-algebras, Trans. Am. Math. Soc., 347, 11, 4259-4275 (1995) · Zbl 0851.46003
[7] Boulabiar, K., Buskes, G., Page, R.: On some properties of bilinear maps of order bounded variation. Posit. Int., J. Devot. Theory Appl. Posit. Anal. 9(3), 401-414 (2005) · Zbl 1113.47025
[8] Davie, AM; Gamelin, TW, A theorem on polynomial-star approximation, Proc. Am. Math. Soc., 106, 2, 351-356 (1989) · Zbl 0683.46037 · doi:10.1090/S0002-9939-1989-0947313-8
[9] Fremlin, DH, Abstract Köthe spaces, I. Proc. Camb. Philos. Soc., 63, 653-660 (1967) · Zbl 0149.33501 · doi:10.1017/S0305004100041621
[10] Galindo, P.; García, D.; Maestre, M.; Mujica, J., Extension of multilinear mappings on Banach spaces, Studia Math., 108, 1, 55-76 (1994) · Zbl 0852.46004 · doi:10.4064/sm-108-1-55-76
[11] Gamelin, T. W.: Analytic functions on Banach spaces. In: Complex Potential Theory (Montreal, PQ, 1993) NATO Advanced Science Institute Series C Mathematical and Physical Sciences, vol. 439. Kluwer Acad. Publ., Dordrecht, pp. 187-233 (1994) · Zbl 0803.46049
[12] Huijsmans, CB; de Pagter, B., The order bidual of lattice ordered algebras, J. Funct. Anal., 59, 1, 41-64 (1984) · Zbl 0549.46006 · doi:10.1016/0022-1236(84)90052-1
[13] Meyer-Nieberg, P., Banach Lattices (1991), Berlin: Springer, Berlin · Zbl 0743.46015 · doi:10.1007/978-3-642-76724-1
[14] Olympia Nicodemi. Homomorphisms of algebras of germs of holomorphic functions. In: Functional Analysis, Holomorphy, and Approximation Theory (Proc. Sem., Univ. Fed. Rio de Janeiro, Rio de Janeiro, 1978), Lecture Notes in Mathematics, vol. 843, Springer, Berlin, pp. 534-546 (1981) · Zbl 0482.46012
[15] Qingying, B.; Buskes, G., Polynomials on Banach lattices and positive tensor products, J. Math. Anal. Appl., 388, 2, 845-862 (2012) · Zbl 1245.46035 · doi:10.1016/j.jmaa.2011.10.001
[16] Sánchez, F. Cabello, García, R., Villanueva, I.: Extension of Multilinear Operators on Banach Spaces, vol. 15, pp. 291-334 (III Congress on Banach Spaces (Jarandilla de la Vera, 1998)) (2000) · Zbl 0982.46006
[17] Shotaev, GN, Some properties of regular bilinear operators, Vladikavkaz. Mat. Z., 1, 2, 44-47 (1999) · Zbl 1050.47508
[18] Synnačke, J., The operator that is conjugate to a regular one, and certain applications of it to the question of the complete continuity and weak complete continuity of regular operators, Vestnik Leningrad. Univ., 1, 60-69 (1972) · Zbl 0234.47035
[19] Wickstead, A. W.: Regular operators between Banach lattices. In: Positivity, Trends Mathematics, Birkhäuser, Basel, pp. 255-279 (2007) · Zbl 1146.47025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.