×

Process capability vector for multivariate nonlinear profiles. (English) Zbl 07498036

Summary: We present a two-phase methodology based on the concept of depth to measure the capability of processes characterized by the functional relationship of multivariate nonlinear profile data, treated as multivariate functional observations. In the first phase, the modified tolerance region is estimated using a historical data set, while in the second, a current process is assessed using the proposed three-component vector, where the first component measures the volume ratio between the current process region and the modified tolerance region; the second measures the probability that the median of the current process is within the modified tolerance region, and the third measures the probability that the current process region is inside the modified tolerance region. To facilitate interpretation, a single index is derived from this capability vector. A simulation study is carried out to assess the performance of the proposed method. An real example illustrates the applicability of this approach.

MSC:

62-XX Statistics

Software:

depth; geometry; R
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Montgomery, DC., Introduction to statistical quality control (2007), Hoboken (NJ): John Wiley & Sons, Hoboken (NJ)
[2] Ryan, TP., Statistical methods for quality improvement (2011), Hoboken (NJ): John Wiley & Sons, Hoboken (NJ) · Zbl 1266.62099
[3] Juran, JM., Juran’s quality control handbook, 3 (1974), New York: McGraw-Hill, New York
[4] Kane, VE., Process capability indices, J Quality Technol, 18, 1, 41-52 (1986)
[5] Chan, LK; Cheng, SW; Spiring, FA., A new measure of process capability: \(####\), J Quality Technol, 20, 3, 162-175 (1988)
[6] Pearn, WL; Kotz, S.; Johnson, NL., Distributional and inferential properties of process capability indices, J Quality Technol, 24, 4, 216-231 (1992)
[7] Johnson, NL., Systems of frequency curves generated by methods of translation, Biometrika, 36, 1-2, 149-176 (1949) · Zbl 0033.07204
[8] Box, GE; Cox, DR., An analysis of transformations, J R Stat Soc: Ser B (Methodol), 26, 2, 211-243 (1964) · Zbl 0156.40104
[9] Somerville, SE; Montgomery, DC., Process capability indices and non-normal distributions, Qual Eng, 9, 2, 305-316 (1996)
[10] Clements, JA., Process capability calculations, for non-normal distributions, Quality Progress, 22, 95-100 (1989)
[11] Pearn, W.; Kotz, S., Application of clements’ method for calculating second-and third-generation process capability indices for non-normal pearsonian populations, Qual Eng, 7, 1, 139-145 (1994)
[12] Ciupke, K., Multivariate process capability index based on data depth concept, Quality Reliab Eng Int, 32, 7, 2443-2453 (2016)
[13] Taam, W.; Subbaiah, P.; Liddy, JW., A note on multivariate capability indices, J Appl Stat, 20, 3, 339-351 (1993)
[14] Shahriari, H, Hubele, N, Lawrence, F. A multivariate process capability vector. Proceedings of the 4th Industrial Engineering Research Conference; 1995.
[15] Wang, F.; Hubele, NF; Lawrence, FP, Comparison of three multivariate process capability indices, J Quality Technol, 32, 3, 263-275 (2000)
[16] Pan, JN; Lee, CY., New capability indices for evaluating the performance of multivariate manufacturing processes, Quality Reliab Eng Int, 26, 1, 3-15 (2010)
[17] Shahriari, H.; Abdollahzadeh, M., A new multivariate process capability vector, Qual Eng, 21, 3, 290-299 (2009)
[18] Ciupke, K., Multivariate process capability vector based on one-sided model, Quality Reliab Eng Int, 31, 2, 313-327 (2015)
[19] Wierda, SJ., A multivariate process capability index, Commun Stat-Simul Comput, 47, 342-342 (1993)
[20] Chen, H., A multivariate process capability index over a rectangular solid tolerance zone, Stat Sin (1994) · Zbl 0824.60045
[21] Pal, S., Performance evaluation of a bivariate normal process, Qual Eng, 11, 3, 379-386 (1999)
[22] Polansky, AM., A smooth nonparametric approach to multivariate process capability, Technometrics, 43, 2, 199-211 (2001)
[23] Castagliola, P.; Castellanos, JVG., Capability indices dedicated to the two quality characteristics case, Qual Technol Quant Manag, 2, 2, 201-220 (2005)
[24] Abbasi NSTA, B., Estimating process capability indices of multivariate nonnormal processes, Int J Adv Manuf Technol, 50, 5-8, 823-830 (2010)
[25] Wang, CH., Constructing multivariate process capability indices for short-run production, Int J Adv Manuf Technol, 26, 11-12, 1306-1311 (2005)
[26] Scagliarini, M., Multivariate process capability using principal component analysis in the presence of measurement errors, AStA Adv Stat Anal, 95, 2, 113-128 (2011) · Zbl 1477.62384
[27] Perakis, M.; Xekalaki, E., On the implementation of the principal component analysis-based approach in measuring process capability, Quality Reliab Eng Int, 28, 4, 467-480 (2012)
[28] de Felipe, D.; Benedito, E., A review of univariate and multivariate process capability indices, Int J Adv Manuf Technol, 92, 5-8, 1687-1705 (2017)
[29] González, I.; Sánchez, I., Capability indices and nonconforming proportion in univariate and multivariate processes, The Int J Adv Manuf Technol, 44, 9-10, 1036-1050 (2009)
[30] Kakde, D, Chaudhuri, A, Shaw, D. A new non-parametric process capability index. 2018 IEEE International Conference on Prognostics and Health Management (ICPHM); IEEE; 2018. p. 1-7.
[31] Ganji, ZA., Multivariate process incapability vector, Quality Reliab Eng Int, 35, 4, 902-919 (2019)
[32] Ganji, ZA; Sadeghpour Gildeh, B., A new multivariate process capability index, Total Qual Manag Bus Excell, 30, 5-6, 525-536 (2019)
[33] Chatterjee, M., Impact of multivariate normality assumption on multivariate process capability indices, Commun Stat: Case Stud, Data Anal Appl, 5, 4, 314-345 (2019)
[34] Khadse, KG; Khadse, AK., On properties of probability-based multivariate process capability indices, Quality Reliab Eng Int, 36, 5, 1768-1785 (2020)
[35] Woodall, WH., Current research on profile monitoring, Production, 17, 3, 420-425 (2007)
[36] Kang, L.; Albin, SL., On-line monitoring when the process yields a linear profile, J Quality Technol, 32, 4, 418-426 (2000)
[37] Mahmoud, MA; Woodall, WH., Phase I analysis of linear profiles with calibration applications, Technometrics, 46, 4, 380-391 (2004)
[38] Kusiak, A.; Zheng, H.; Song, Z., Models for monitoring wind farm power, Renew Energy, 34, 3, 583-590 (2009)
[39] Wang, K.; Tsung, F., Using profile monitoring techniques for a data-rich environment with huge sample size, Quality Reliab Eng Int, 21, 7, 677-688 (2005)
[40] Woodall, WH; Spitzner, DJ; Montgomery, DC, Using control charts to monitor process and product quality profiles, J Quality Technol, 36, 3, 309-320 (2004)
[41] Noorossana, R.; Saghaei, A.; Amiri, A., Statistical analysis of profile monitoring, 865 (2011), Hoboken (NJ): John Wiley & Sons, Hoboken (NJ)
[42] Woodall, WH; Montgomery, DC., Some current directions in the theory and application of statistical process monitoring, J Quality Technol, 46, 1, 78-94 (2014)
[43] Maleki, MR; Amiri, A.; Castagliola, P., An overview on recent profile monitoring papers (2008-2018) based on conceptual classification scheme, Computers Indust Eng, 126, 705-728 (2018)
[44] Pan, JN; Li, CI; Lu, MZ., Detecting the process changes for multivariate nonlinear profile data, Quality Reliab Eng Int, 35, 6, 1890-1910 (2019)
[45] Kordestani, M.; Hassanvand, F.; Samimi, Y., Monitoring multivariate simple linear profiles using robust estimators, Commun Stat-Theor Meth, 49, 12, 2964-2989 (2020) · Zbl 1511.62460
[46] Ghosh, M.; Li, Y.; Zeng, L., Modeling multivariate profiles using gaussian process-controlled B-splines, IISE Trans, 53, 1-12 (2020)
[47] Zahra Hosseinifard, S.; Abbasi, B., Evaluation of process capability indices of linear profiles, Int J Quality Reliab Manag, 29, 2, 162-176 (2012)
[48] Hosseinifard, SZ; Abbasi, B., Process capability analysis in non normal linear regression profiles, Commun Stat-Simul Comput, 41, 10, 1761-1784 (2012) · Zbl 1272.62147
[49] Ebadi, M.; Shahriari, H., A process capability index for simple linear profile, Int J Adv Manuf Technol, 64, 5-8, 857-865 (2013)
[50] Ebadi, M.; Amiri, A., Evaluation of process capability in multivariate simple linear profiles, Scientia Iranica, 19, 6, 1960-1968 (2012)
[51] Wang, FK; Guo, YC., Measuring process yield for nonlinear profiles, Quality Reliab Eng Int, 30, 8, 1333-1339 (2014)
[52] Chiang, JY; Lio, Y.; Tsai, TR., Mewma control chart and process capability indices for simple linear profiles with within-profile autocorrelation, Quality Reliab Eng Int, 33, 5, 1083-1094 (2017)
[53] Alevizakos, V.; Koukouvinos, C.; Lappa, A., Comparative study of the \(####\) and \(####\) indices for logistic regression profile using different link functions, Qual Eng, 31, 3, 453-462 (2019)
[54] Alevizakos, V.; Koukouvinos, C.; Castagliola, P., Process capability index for poisson regression profile based on the \(####\) index, Qual Eng, 31, 3, 430-438 (2019)
[55] Ganji, ZA; Gildeh, BS., Fuzzy process capability indices for simple linear profile, J Appl Stat, 47, 12, 2136-2158 (2020) · Zbl 1521.62226
[56] Alevizakos, V.; Koukouvinos, C., Evaluation of process capability in gamma regression profiles, Commun Stat-Simul Comput, 1-16 (2020) · Zbl 07603809
[57] Schabenberger, O.; Pierce, FJ., Contemporary statistical models for the plant and soil sciences (2001), Boca Raton (FL): CRC Press, Boca Raton (FL)
[58] Nemati Keshteli, R.; Kazemzadeh, RB; Amiri, A., Functional process capability indices for circular profile, Quality Reliab Eng Int, 30, 5, 633-644 (2014)
[59] Guevara, RD; Vargas, JA., Process capability analysis for nonlinear profiles using depth functions, Quality and Reliability Engineering International, 31, 3, 465-487 (2015)
[60] Guevara, RD; Vargas, JA; Castagliola, P., Evaluation of process capability in non-linear profiles using hausdorff distance, Qual Technol Quant Manag, 13, 1, 1-15 (2016)
[61] Negash, YT., Process yield index and variable sampling plans for autocorrelation between nonlinear profiles, IEEE Access, 7, 8931-8943 (2018)
[62] Guevara, RD; Vargas, JA., Evaluation of process capability in multivariate nonlinear profiles, J Stat Comput Simul, 86, 12, 2411-2428 (2016) · Zbl 1510.62477
[63] Lupo, T., The new nino capability index for dynamic process capability analysis, Quality Reliab Eng Inte, 31, 2, 305-312 (2015)
[64] Niavarani, MR; Noorossana, R.; Abbasi, B., Three new multivariate process capability indices, Commun Stat-Theor Meth, 41, 2, 341-356 (2012) · Zbl 1244.62165
[65] Ganji, ZA; Gildeh, BS., A modified multivariate process capability vector, Int J Adv Manuf Technol, 83, 5-8, 1221-1229 (2016)
[66] Zuo, Y.; Serfling, R., General notions of statistical depth function, Ann Stat, 28, 461-482 (2000) · Zbl 1106.62334
[67] Rafalin, E, Souvaine, D. Data depth contours-a computational geometry perspective. Tufts University; 2004. · Zbl 1088.62067
[68] Zuo, Y.; He, X., On the limiting distributions of multivariate depth-based rank sum statistics and related tests, Ann Stat, 34, 6, 2879-2896 (2006) · Zbl 1114.62020
[69] Serfling, R., Quantile functions for multivariate analysis: approaches and applications, Stat Neerl, 56, 2, 214-232 (2002) · Zbl 1076.62054
[70] Mahalanobis, P. On the generalized distance in statistics. National Institute of Sciences of India; Vol. 12, 1936. p. 49-55. · Zbl 0015.03302
[71] Tukey, JW. Mathematics and the picturing of data. International Congress of Mathematicians; Vol. 2, Canadian Mathematical Congress; 1975. p. 523-531. · Zbl 0347.62002
[72] Barnett, V., The ordering of multivariate data, J R Stat Soc Ser A, 139, 319-354 (1976)
[73] Oja, H., Descriptive statistics for multivariate distributions, Stat Probab Lett, 1, 327-332 (1983) · Zbl 0517.62051
[74] Liu, RY., On a notion of data depth based on random simplices, Ann Stat, 18, 405-414 (1990) · Zbl 0701.62063
[75] Liu, RY; Parelius, JM; Singh, K., Multivariate analysis by data depth: descriptive statistics, graphics and inference, Ann Stat, 27, 783-858 (1999) · Zbl 0984.62037
[76] Serfling, R., Nonparametric multivariate descriptive measures based on spatial quantiles, J Stat Plan Inference, 123, 259-278 (2004) · Zbl 1045.62048
[77] Wang, J, Serfling, R. Data depth: robust multivariate analysis, computational geometry, and applications. Chapter on scale curves for nonparametric description of dispersion. Vol. 72, American Mathematical Society; 2006. p. 37-48. · Zbl 1103.62304
[78] Claeskens, G.; Hubert, M.; Slaets, L., Multivariate functional halfspace depth, J Am Stat Assoc, 109, 505, 411-423 (2014) · Zbl 1367.62162
[79] Mosler, K., Depth statistics. Robustness and complex data structures (2013), Berlin, Heidelberg: Springer, Berlin, Heidelberg
[80] Liu, RY; Singh, K., A quality index based on data depth and multivariate rank tests, J Am Stat Assoc, 88, 421, 252-260 (1993) · Zbl 0772.62031
[81] Liu, RY., Control charts for multivariate processes, J Am Stat Assoc, 90, 432, 1380-1387 (1995) · Zbl 0868.62075
[82] Stoumbos, ZG, Jones, LA, Woodall, WH, et al. On nonparametric multivariate control charts based on data depth. Frontiers in statistical quality control. Vol. 6, Springer; 2001. p. 207-227.
[83] Li, J.; Zhang, X.; Jeske, DR., Nonparametric multivariate cusum control charts for location and scale changes, J Nonparametr Stat, 25, 1, 1-20 (2013) · Zbl 1297.62251
[84] Li, Z.; Dai, Y.; Wang, Z., Multivariate change point control chart based on data depth for phase I analysis, Commun Stat-Simul Comput, 43, 6, 1490-1507 (2014) · Zbl 1333.62304
[85] Bell, RC; Jones-Farmer, LA; Billor, N., A distribution-free multivariate phase I location control chart for subgrouped data from elliptical distributions, Technometrics, 56, 4, 528-538 (2014)
[86] Barale, M.; Shirke, D., Nonparametric control charts based on data depth for location parameter, J Stat Theor Pract, 13, 3, 41 (2019) · Zbl 1423.62164
[87] Fraiman, R.; Muniz, G., Trimmed means for functional data, Test, 10, 419-440 (2001) · Zbl 1016.62026
[88] Cuevas, A.; Febrero, M.; Fraiman, R., On the use of bootstrap for estimating functions with functional data, Comput Stat Data Anal, 51, 1063-1074 (2006) · Zbl 1157.62390
[89] Cuevas, A.; Febrero, M.; Fraiman, R., Robust estimation and classification for functional data via projection-based depth notions, Comput Stat, 22, 481-496 (2007) · Zbl 1195.62032
[90] Febrero, M.; Galeano, P.; González-Manteiga, W., Outlier detection in functional data by depth measures, with application to identify abnormal nox levels, Environmetrics, 19, 331-345 (2008)
[91] López-Pintado, S.; Romo, J., On the concept of depth for functional data, J Am Stat Assoc, 104, 486, 718-734 (2009) · Zbl 1388.62139
[92] López-Pintado, S.; Romo, J., A half-region depth for functional data, Comput Stat Data Anal, 55, 1679-1695 (2011) · Zbl 1328.62029
[93] Narisetty, NN; Nair, VN., Extremal depth for functional data and applications, J Am Stat Assoc, 111, 516, 1705-1714 (2016)
[94] Berrendero, JR; Justel, A.; Svarc, M., Principal components for multivariate functional data, Comput Stat Data Anal, 55, 9, 2619-2634 (2011) · Zbl 1464.62025
[95] Ieva, F.; Paganoni, AM., Depth measures for multivariate functional data, Commun Stat-Theor Meth, 42, 7, 1265-1276 (2013) · Zbl 1347.62093
[96] Ramsay, JO., Functional data analysis, 4 (2004), New York: Wiley Online Library, New York
[97] Horváth, L.; Kokoszka, P., Inference for functional data with applications, 200 (2012), New York: Springer Science & Business Media, New York · Zbl 1279.62017
[98] Kokoszka, P.; Reimherr, M., Introduction to functional data analysis (2017), Boca Raton, FL: CRC Press, Boca Raton, FL · Zbl 1411.62004
[99] Magagnoli, U, Zappa, D. Parametric and non-parametric capability indices for multivariate processes. Università cattolica del Sacro Cuore, Dipartimento di scienze statistiche; 2007.
[100] de Berg, M.; Cheong, O.; Van Kreveld, M., Computational geometry algorithms and applications (2008), Berlin, Heidelberg: Springer, Berlin, Heidelberg · Zbl 1140.68069
[101] Johnson, NL; Kemp, AW; Kotz, S., Univariate discrete distributions, 444 (2005), Hoboken (NJ): John Wiley & Sons, Hoboken (NJ) · Zbl 1092.62010
[102] Kemp, A.; Kemp, C., Distributional properties of a model for the spread or drug abuse, Commun Stat-Theor Meth, 15, 11, 3287-3298 (1986) · Zbl 0616.60086
[103] Alevizakos, V.; Koukouvinos, C., Monitoring of zero-inflated binomial processes with a dewma control chart, J Appl Stat, 48, 1-20 (2020)
[104] R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2018. Available from: https://www.R-project.org/.
[105] Genest, M, Masse, JC, src/depthf contains eigen JFP, et al. Depth: Nonparametric depth functions for multivariate analysis; 2019. R package version 2.1-1.1; Available from: https://CRAN.R-project.org/package=depth.
[106] Habel, K, Grasman, R, Gramacy, RB, et al. Geometry: Mesh generation and surface tessellation; 2019. R package version 0.4.5. Available from: https://CRAN.R-project.org/package=geometry.
[107] Munck, L.; Nørgaard, L.; Engelsen, SB, Chemometrics in food sciencea demonstration of the feasibility of a highly exploratory, inductive evaluation strategy of fundamental scientific significance, Chemometr Intell Lab Syst, 44, 1-2, 31-60 (1998)
[108] Bro, R., Exploratory study of sugar production using fluorescence spectroscopy and multi-way analysis, Chemometr Intell Lab Syst, 46, 2, 133-147 (1999)
[109] Smilde, A, Bro, R, Geladi, P. Multi-way analysis with applications in the chemical sciences. 2004.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.