×

Assessing goodness-of-fit in marked point process models of neural population coding via time and rate rescaling. (English) Zbl 1453.92027

Summary: Marked point process models have recently been used to capture the coding properties of neural populations from multiunit electrophysiological recordings without spike sorting. These clusterless models have been shown in some instances to better describe the firing properties of neural populations than collections of receptive field models for sorted neurons and to lead to better decoding results. To assess their quality, we previously proposed a goodness-of-fit technique for marked point process models based on time rescaling, which for a correct model produces a set of uniform samples over a random region of space. However, assessing uniformity over such a region can be challenging, especially in high dimensions. Here, we propose a set of new transformations in both time and the space of spike waveform features, which generate events that are uniformly distributed in the new mark and time spaces. These transformations are scalable to multidimensional mark spaces and provide uniformly distributed samples in hypercubes, which are well suited for uniformity tests. We discuss the properties of these transformations and demonstrate aspects of model fit captured by each transformation. We also compare multiple uniformity tests to determine their power to identify lack-of-fit in the rescaled data. We demonstrate an application of these transformations and uniformity tests in a simulation study. Proofs for each transformation are provided in the appendix.

MSC:

92B20 Neural networks for/in biological studies, artificial life and related topics

Software:

spatial; GitHub; popTRT
PDFBibTeX XMLCite
Full Text: DOI DOI

References:

[1] Berrendero, J. R., Cuevas, A., & Vjosázquez-grande, F. (2006). Testing multivariate uniformity: The distance-to-boundary method. Canadian Journal of Statistics, 34(4), 693-707. , · Zbl 1115.62046
[2] Brown, E. N., Barbieri, R., Ventura, V., Kass, R. E., & Frank, L. M. (2002). The time-rescaling theorem and its application to neural spike train data analysis. Neural Computation, 14(2), 325-346. , · Zbl 0989.62060
[3] Chen, Z., & Ye, C. (2009). An alternative test for uniformity. International Journal of Reliability, Quality and Safety Engineering, 16(4), 343-356. ,
[4] Chiu, S. N., & Liu, K. I. (2009). Generalized Cramér-von Mises goodness-of-fit tests for multivariate distributions. Computational Statistics and Data Analysis, 53(11), 3817-3834. , · Zbl 1453.62070
[5] Csörgő, M. (2014). Multivariate Cramér-Von Mises statistics. Wiley StatsRef: Statistics Reference Online.,
[6] Deng, X., Liu, D. F., Kay, K., Frank, L. M., & Eden, U. T. (2015). Clusterless decoding of position from multiunit activity using a marked point process filter. Neural Computation, 27(7), 1438-1460. , · Zbl 1414.92087
[7] Dixon, P. M. (2014). Ripley’s K function. Wiley StatsRef: Statistics Reference Online.,
[8] Fan, Y. (1998). Goodness-of-fit tests based on kernel density estimators with fixed smoothing parameters. Econometric Theory, 14, 604-621. ,
[9] Friedman, J. H., & Rafsky, L. C. (1979). Multivariate generalizations of the Wald-Wolfowitz and Smirnov two-sample tests. Annals of Statistics, 7, 697-717. , · Zbl 0423.62034
[10] Greenwood, P. E., & Nikulin, M. S. (1996). A guide to chi-squared testing. New York: Wiley. · Zbl 0853.62037
[11] Ho, L. P., & Chiu, S. N., (2007). Testing uniformity of a spatial point pattern. Journal of Computational and Graphical Statistics, 16(2), 378-398. ,
[12] Jafari Mamaghani, M., Andersson, M., & Krieger, P. (2010). Spatial point pattern analysis of neurons using Ripley’s K-function in 3D. Frontiers in Neuroinformatics, 4, 9.
[13] Jain, A. K., Xu, X., Ho, T. K., & Xiao, F. (2002). Uniformity testing using minimal spanning tree. In Proceedings of the International Conference on Pattern Recognition. Piscataway, NJ: IEEE. ,
[14] Jeffreys, H., Jeffreys, B., & Swirles, B. (1999). Methods of mathematical physics. Cambridge: Cambridge University Press. , · Zbl 0063.03051
[15] Justel, A., Peña, D., & Zamar, R. (1997). A multivariate Kolmogorov-Smirnov test of goodness of fit. Statistics and Probability Letters, 35(3), 251-259. , · Zbl 0883.62054
[16] Kloosterman, F., Layton, S. P., Chen, Z., & Wilson, M. A. (2014). Bayesian decoding using unsorted spikes in the rat hippocampus. Journal of Neurophysiology, 111, 217-227. ,
[17] Lang, G., & Marcon, E. (2013). Testing randomness of spatial point patterns with the Ripley statistic. ESAIM: Probability and Statistics, 17, 767-788. , · Zbl 1395.62037
[18] Liang, J.-J., Fang, K.-T., Hickernell, F., & Li, R. (2001). Testing multivariate uniformity and its applications. Mathematics of Computation, 70(233), 337-355. , · Zbl 0958.65016
[19] Marcon, E., Traissac, S., & Lang, G. (2013). A statistical test for Ripley’s function rejection of Poisson null hypothesis. International Scholarly Research Notices, 2013, 753475.
[20] Marhuenda, Y., Morales, D., & Pardo, M. (2005). A comparison of uniformity tests. Statistics, 39(4), 315-327. , · Zbl 1084.62041
[21] Meng, X.-L., Rosenthal, R., & Rubin, D. B. (1992). Comparing correlated correlation coefficients. Psychological Bulletin, 111(1), 172. ,
[22] Miller Jr., R. G. (1977). Developments in multiple comparisons 1966-1976. Journal of the American Statistical Association, 72(360a), 779-788. , · Zbl 0369.62079
[23] Papangelou, F. (1972). Integrability of expected increments of point processes and a related random change of scale. Transactions of the American Mathematical Society, 165, 483-506. , · Zbl 0236.60036
[24] Pearson, E. S. (1938). The probability integral transformation for testing goodness of fit and combining independent tests of significance. Biometrika, 30(1/2), 134-148. , · Zbl 0019.12803
[25] Ripley, B. D. (2005). Spatial statistics. New York: Wiley. · Zbl 0583.62087
[26] Rosenblatt, M. (1952). Remarks on a multivariate transformation. Annals of Mathematical Statistics, 23(3), 470-472. , · Zbl 0047.13104
[27] Smith, S. P., & Jain, A. K. (1984). Testing for uniformity in multidimensional data. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-6(1), 73-81. ,
[28] Sodkomkham, D., Ciliberti, D., Wilson, M. A., Fukui, K.-i., Moriyama, K., Numao, M., & Kloosterman, F. (2016). Kernel density compression for real-time Bayesian encoding/decoding of unsorted hippocampal spikes. Knowledge-Based Systems, 94, 1-12. ,
[29] Tao, L., Weber, K. E., Arai, K., & Eden, U. T. (2018). A common goodness-of-fit framework for neural population models using marked point process time-rescaling. Journal of Computational Neuroscience, 45(2), 147-162. , · Zbl 1402.92120
[30] Veen, A., & Schoenberg, F. P. (2006). Assessing spatial point process models using weighted K-functions: Analysis of California earthquakes. In A. Baddeley, P. Gregori, J. Mateu, R. Stoica, & D. Stoyan (Eds.), Lecture Notes in Statistics: Vol. 185. Case studies in spatial point process modeling. New York: Springer. , · Zbl 05243467
[31] Ventura, V. (2009). Traditional waveform based spike sorting yields biased rate code estimates. In Proceedings of the National Academy of Sciences, 106(17), 6921-6926. ,
[32] Yousefi, A., Amidi, Y., Nazari, B., & Eden, U. T. (2020). GitHub repository. https://github.com/YousefiLab/Marked-PointProcess-Goodness-of-Fit
[33] Zimmerman, D. L. (1993). A bivariate Cramér-von Mises type of test for spatial randomness. Journal of the Royal Statistical Society: Series C (Applied Statistics), 42(1), 43-54. · Zbl 0825.62466
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.