×

Ergodicity of stochastic Burgers system with dissipative term. (English) Zbl 1310.60101

Summary: A 2-dimensional stochastic Burgers equation with a dissipative term perturbed by Wiener noise is considered. The aim is to prove the well-posedness, existence, and uniqueness of an invariant measure as well as a strong law of large numbers and convergence to the equilibrium.

MSC:

60H15 Stochastic partial differential equations (aspects of stochastic analysis)
60F15 Strong limit theorems
37A25 Ergodicity, mixing, rates of mixing
35R60 PDEs with randomness, stochastic partial differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Beteman, H., Some recent researches of the motion of fluid, Monthly Weather Review, 43, 163-170 (1915)
[2] Forsyth, A. R., Theory of Differential Equations, 6 (1906), Cambridge, UK: Cambridge University Press, Cambridge, UK · JFM 37.0366.01
[3] Chambers, D. H.; Adrian, R. J.; Moin, P.; Stewart, D. S.; Sung, H. J., Karhunen Loeve expansion of Burgers’ model of turbulence, Physics of Fluids, 31, 2573-2582 (1988)
[4] Choi, H. C.; Temam, R.; Moin, P.; Kim, J., Feedback control for unsteady flow and its application to the stochastic Burgers equation, Journal of Fluid Mechanics, 253, 509-543 (1993) · Zbl 0810.76012
[5] Jeng, D., Forced model equation for turbulence, The Physics of Fluids, 12, 10, 2006-2010 (1969) · Zbl 0187.51604
[6] Hosokawa, I.; Yamamoto, K., Turbulence in the randomly forced, one-dimensional Burgers flow, Journal of Statistical Physics, 13, 3, 245-272 (1975)
[7] Kardar, M.; Parisi, G.; Zhang, Y., Dynamic scaling of growing interfaces, Physical Review Letters, 56, 9, 889-892 (1986) · Zbl 1101.82329 · doi:10.1103/PhysRevLett.56.889
[8] Bertini, L.; Cancrini, N.; Jona-Lasinio, G., The stochastic Burgers equation, Communications in Mathematical Physics, 165, 2, 211-232 (1994) · Zbl 0807.60062 · doi:10.1007/BF02099769
[9] Da Prato, G.; Debussche, A.; Temam, R., Stochastic Burgers’ equation, Nonlinear Differential Equations and Applications, 1, 4, 389-402 (1994) · Zbl 0824.35112 · doi:10.1007/BF01194987
[10] Da Prato, G.; Debussche, A., Stochastic Cahn-Hilliard equation, Nonlinear Analysis: Theory, Methods & Applications A, 26, 2, 241-263 (1996) · Zbl 0838.60056 · doi:10.1016/0362-546X(94)00277-O
[11] Gyöngy, I.; Nualart, D., On the stochastic Burgers’ equation in the real line, The Annals of Probability, 27, 2, 782-802 (1999) · Zbl 0939.60058 · doi:10.1214/aop/1022677386
[12] Gourcy, M., Large deviation principle of occupation measure for stochastic Burgers equation, Annales de l’Institut Henri Poincaré, 43, 4, 441-459 (2007) · Zbl 1123.60016 · doi:10.1016/j.anihpb.2006.07.003
[13] Weinan, E.; Khanin, K.; Mazel, A.; Sinai, Y., Invariant measures for Burgers equation with stochastic forcing, Annals of Mathematics, 151, 3, 877-960 (2000) · Zbl 0972.35196 · doi:10.2307/121126
[14] Dong, Z.; Xu, T. G., One-dimensional stochastic Burgers equation driven by Lévy processes, Journal of Functional Analysis, 243, 2, 631-678 (2007) · Zbl 1114.60051 · doi:10.1016/j.jfa.2006.09.010
[15] Wang, G.; Zeng, M.; Guo, B., Stochastic Burgers’ equation driven by fractional Brownian motion, Journal of Mathematical Analysis and Applications, 371, 1, 210-222 (2010) · Zbl 1197.60063 · doi:10.1016/j.jmaa.2010.05.015
[16] Hou, Z.; Luo, J.; Shi, P.; Nguang, S. K., Stochastic stability of Ito differential equations with semi-Markovian jump parameters, IEEE Transactions on Automatic Control, 51, 8, 1382-1386 (2006)
[17] Li, F.; Wu, L.; Shi, P., Stochastic stability of semi-Markovian jump systems with mode-dependent delays, International Journal of Robust and Nonlinear Control (2013) · Zbl 1302.93229 · doi:10.1002/rnc.3057
[18] Qiu, J.; Feng, G.; Yang, J., A new design of delay-dependent robust \(H_\infty\) filtering for discrete-time T-S fuzzy systems with time-varying delay, IEEE Transactions on Fuzzy Systems, 17, 5, 1044-1058 (2009) · doi:10.1109/TFUZZ.2009.2017378
[19] Qiu, J.; Feng, G.; Yang, J., Delay-dependent non-synchronized robust \(H_\infty\) state estimation for discrete-time piecewise linear delay systems, International Journal of Adaptive Control and Signal Processing, 23, 12, 1082-1096 (2009) · Zbl 1191.93132 · doi:10.1002/acs.1103
[20] Wei, Y.; Qiu, J.; Karimi, H. R.; Wang, M., A new design of \(H_\infty\) filtering for continuous-time Markovian jump systems with time-varying delay and partially accessible mode information, Signal Processing, 93, 9, 2392-2407 (2013)
[21] Hairer, M.; Mattingly, J. C.; Scheutzow, M., Asymptotic coupling and a general form of Harris’ theorem with applications to stochastic delay equations, Probability Theory and Related Fields, 149, 1-2, 223-259 (2011) · Zbl 1238.60082 · doi:10.1007/s00440-009-0250-6
[22] Doob, J. L., Asymptotic properties of Markoff transition prababilities, Transactions of the American Mathematical Society, 64, 393-421 (1948) · Zbl 0041.45406
[23] Da Prato, G.; Zabczyk, J., Stochastic Equations in Infinite Dimensions. Stochastic Equations in Infinite Dimensions, Encyclopedia of Mathematics and its Applications (1992), Cambridge, UK: Cambridge University Press, Cambridge, UK · Zbl 1140.60034 · doi:10.1017/CBO9780511666223
[24] Rockner, M., Intruduction to Stochastic Partial Difficult Equation. Intruduction to Stochastic Partial Difficult Equation, Fall 2005 and Spring 2006, Version (2007), Purdue University
[25] Kenig, C. E.; Ponce, G.; Vega, L., Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Communications on Pure and Applied Mathematics, 46, 4, 527-620 (1993) · Zbl 0808.35128 · doi:10.1002/cpa.3160460405
[26] Flandoli, F., Dissipativity and invariant measures for stochastic Navier-Stokes equations, Nonlinear Differential Equations and Applications, 1, 4, 403-423 (1994) · Zbl 0820.35108 · doi:10.1007/BF01194988
[27] Pazy, A., Semigroups of Linear Operators and Applications to Partial Differential Equations (1983), New York, NY, USA: Springer, New York, NY, USA · Zbl 0516.47023 · doi:10.1007/978-1-4612-5561-1
[28] Da Prato, G.; Zabczyk, J., Ergodicity for Infinite-Dimensional Systems. Ergodicity for Infinite-Dimensional Systems, London Mathematical Society Lecture Note Series, 229 (1996), Cambridge, UK: Cambridge University Press, Cambridge, UK · Zbl 0849.60052 · doi:10.1017/CBO9780511662829
[29] Pezat, S.; Zabczyk, J., Strong Feller Property and Irreducibility for Diffusions on Hilbert Spaces. Strong Feller Property and Irreducibility for Diffusions on Hilbert Spaces, no. 510 (1993), Warsaw, Poland: Institute of Mathematics Polish Academy of Sciences, Warsaw, Poland · Zbl 0831.60083
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.