×

Spreading dynamics of a disease-awareness SIS model on complex networks. (English) Zbl 1280.92061

Summary: In this paper, to better understand the impact of awareness and the network structure on epidemic transmission, we divide the population into four subpopulations corresponding to different physical states and conscious states, and we first propose a modified disease-awareness model, then verify the global stability of the disease-free and endemic equilibria, and finally present numerical simulations to demonstrate the theoretical analysis. By examining the spreading influences of model parameters, we find that the outbreak scale can be effectively controlled through increasing the spread rate of awareness or reducing the rate of awareness loss. That is to say, all sorts of media publicity are meaningful. Meanwhile, we find that infection will be affected by consciousness through the control variable.

MSC:

92D30 Epidemiology
92B05 General biology and biomathematics
34D23 Global stability of solutions to ordinary differential equations
93A30 Mathematical modelling of systems (MSC2010)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1073/pnas.0810762106 · Zbl 1203.91242 · doi:10.1073/pnas.0810762106
[2] DOI: 10.1016/j.jtbi.2010.02.032 · doi:10.1016/j.jtbi.2010.02.032
[3] DOI: 10.1209/0295-5075/82/38004 · doi:10.1209/0295-5075/82/38004
[4] DOI: 10.1142/S0219622011004312 · Zbl 05934092 · doi:10.1142/S0219622011004312
[5] DOI: 10.1142/S1793524512500660 · Zbl 1300.92101 · doi:10.1142/S1793524512500660
[6] DOI: 10.1142/S1793524511001829 · Zbl 1291.92082 · doi:10.1142/S1793524511001829
[7] DOI: 10.1016/0025-5564(76)90125-5 · Zbl 0344.92016 · doi:10.1016/0025-5564(76)90125-5
[8] DOI: 10.1016/j.physa.2012.02.030 · doi:10.1016/j.physa.2012.02.030
[9] DOI: 10.1103/PhysRevE.64.066112 · doi:10.1103/PhysRevE.64.066112
[10] Misra A. K., Int. J. Biomath. 19 pp 389– (2011)
[11] Pastor-Satorras R., Phys. Rev. Lett. 63 pp 066177– (2001)
[12] DOI: 10.1103/PhysRevLett.86.3200 · doi:10.1103/PhysRevLett.86.3200
[13] DOI: 10.1016/S0025-5564(02)00108-6 · Zbl 1015.92036 · doi:10.1016/S0025-5564(02)00108-6
[14] DOI: 10.1142/S0218339011003981 · Zbl 1370.92171 · doi:10.1142/S0218339011003981
[15] DOI: 10.1016/j.physa.2010.10.006 · doi:10.1016/j.physa.2010.10.006
[16] DOI: 10.1063/1.3673573 · Zbl 1331.92154 · doi:10.1063/1.3673573
[17] DOI: 10.1142/S1793524511001441 · Zbl 1297.92088 · doi:10.1142/S1793524511001441
[18] DOI: 10.1142/S1793524509000662 · Zbl 1342.92288 · doi:10.1142/S1793524509000662
[19] Zhao X., Canadian Appl. Math. Quart. 4 pp 421– (1996)
[20] DOI: 10.1016/j.cnsns.2011.08.039 · Zbl 1243.92048 · doi:10.1016/j.cnsns.2011.08.039
[21] DOI: 10.1016/j.apm.2012.01.023 · Zbl 1349.92158 · doi:10.1016/j.apm.2012.01.023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.