×

Nonclassical symmetries and similarity solutions of variable coefficient coupled KdV system using compatibility method. (English) Zbl 1384.35112

Summary: The variable coefficient KdV system is investigated for nonclassical symmetries using compatibility method, and more general symmetries are reported. Several inequivalent reductions are obtained using optimal system of subalgebras, and using well-known methodologies, several traveling wave solutions are also obtained for every reduction.

MSC:

35Q53 KdV equations (Korteweg-de Vries equations)
35C07 Traveling wave solutions
35B06 Symmetries, invariants, etc. in context of PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Malfliet, W., Hereman, W.: The tanh method: I. Exact solutions of nonlinear evolution and wave equations. Phys. Scr. 54(6), 563-568 (1996) · Zbl 0942.35034 · doi:10.1088/0031-8949/54/6/003
[2] Abdou, M.A.: New solitons and periodic wave solutions for nonlinear physical models. Nonlinear Dyn. 52(1-2), 129-136 (2008) · Zbl 1173.35697 · doi:10.1007/s11071-007-9265-7
[3] Zhou, Y., Wang, M., Wang, Y.: Periodic wave solutions to a coupled KdV equations with variable coefficients. Phys. Lett. A 308(1), 31-36 (2003) · Zbl 1008.35061 · doi:10.1016/S0375-9601(02)01775-9
[4] Abdou, M.A.: Further improved F-expansion and new exact solutions for nonlinear evolution equations. Nonlinear Dyn. 52(3), 277-288 (2008) · Zbl 1173.35648 · doi:10.1007/s11071-007-9277-3
[5] Bhrawy, A.H., Abdelkawy, M.A., Biswas, A.: Cnoidal and snoidal wave solutions to coupled nonlinear wave equations by the extended Jacobi’s elliptic function method. Commun. Nonlinear Sci. Numer. Simul. 18(4), 915-925 (2013) · Zbl 1261.35044 · doi:10.1016/j.cnsns.2012.08.034
[6] Krishnan, E.V., Kumar, S., Biswas, A.: Solitons and other nonlinear waves of the Boussinesq equation. Nonlinear Dyn. 70(2), 1213-1221 (2012) · Zbl 1268.35023 · doi:10.1007/s11071-012-0525-9
[7] Hirota, R.; Bullough, R. (ed.); Caudrey, P. (ed.), Direct method of finding exact solutions of nonlinear evolution equations, 40-68 (1976), Berlin · Zbl 0336.35024
[8] Singh, M., Gupta, R.K.: Bäcklund transformations, Lax system, conservation laws and multisoliton solutions for Jimbo-Miwa equation with Bell-polynomials. Commun. Nonlinear Sci. Numer. Simul. 37, 362-373 (2016) · Zbl 1473.35492 · doi:10.1016/j.cnsns.2016.01.023
[9] Singh, M.: New exact solutions for (3+ 1)-dimensional Jimbo-Miwa equation. Nonlinear Dyn. 84(2), 875-880 (2016) · doi:10.1007/s11071-015-2533-z
[10] Singh, M., Gupta, R.K.: Exact solutions for nonlinear evolution equations using novel test function. Nonlinear Dyn. 86(2), 1171-1182 (2016) · Zbl 1349.35061
[11] Liu, H., Li, J., Liu, L.: Painlevé analysis, Lie symmetries, and exact solutions for the time-dependent coefficients Gardner equations. Nonlinear Dyn. 59(3), 497-502 (2010) · Zbl 1183.35236 · doi:10.1007/s11071-009-9556-2
[12] Gupta, R.K., Bansal, A.: Similarity reductions and exact solutions of generalized Bretherton equation with time-dependent coefficients. Nonlinear Dyn. 71(1-2), 1-12 (2013) · Zbl 1268.35007 · doi:10.1007/s11071-012-0637-2
[13] Gupta, R.K., Kumar, V., Jiwari, R.: Exact and numerical solutions of coupled short pulse equation with time-dependent coefficients. Nonlinear Dyn. 79(1), 455-464 (2015) · Zbl 1331.35022 · doi:10.1007/s11071-014-1678-5
[14] Kumar, S.: Painlevé analysis and invariant solutions of Vakhnenko-Parkes (VP) equation with power law nonlinearity. Nonlinear Dyn. 85(2), 1275-1279 (2016) · Zbl 1355.35007
[15] de la Rosa, R., Gandarias, M.L., Bruzón, M.S.: Symmetries and conservation laws of a fifth-order KdV equation with time-dependent coefficients and linear damping. Nonlinear Dyn. 84(1), 135-141 (2016) · Zbl 1354.35133 · doi:10.1007/s11071-015-2254-3
[16] Kumar, R., Gupta, R.K., Bhatia, S.S.: Invariant solutions of variable coefficients generalized Gardner equation. Nonlinear Dyn. 83(4), 2103-2111 (2016) · Zbl 1353.35288 · doi:10.1007/s11071-015-2468-4
[17] Bluman, G.W., Cole, J.D.: The general similarity of the heat equation. J. Math. Mech. 18(11), 1025-1042 (1969) · Zbl 0187.03502
[18] Levi, D., Winternitz, P.: Nonclassical symmetry reduction: example of the Boussinesq equation. J. Phys. A Math. Gen. 22(15), 2915-2924 (1989) · Zbl 0694.35159 · doi:10.1088/0305-4470/22/15/010
[19] Kunzinger, M., Popovych, R.O.: Is a nonclassical symmetry a symmetry? In: Proceedings of 4th Workshop on Group Analysis of Differential Equations and Integrable Systems, pp. 107-120 (2009) · Zbl 1227.35033
[20] Bruzón, M., Gandarias, M.: Applying a new algorithm to derive nonclassical symmetries. Commun. Nonlinear Sci. Numer. Simul. 13(3), 517-523 (2008) · Zbl 1131.35378 · doi:10.1016/j.cnsns.2006.06.005
[21] Clarkson, P.A.: New similarity solutions and Painlevé analysis for the symmetric regularized long wave and the modified Benjamin-Bona-Mahoney equations. J. Phys. A Math. Gen. 22(18), 3821-3848 (1989) · Zbl 0711.35113 · doi:10.1088/0305-4470/22/18/020
[22] Clarkson, P.A.: Nonclassical symmetry reduction of Boussinesq equation. Chaos Solitons Fractals 5(2), 2261-2300 (1995) · Zbl 1080.35530 · doi:10.1016/0960-0779(94)E0099-B
[23] Zhou, Q., Mirzazadeh, M., Zerrad, E., Biswas, A., Belic, M.: Bright, dark, and singular solitons in optical fibers with spatio-temporal dispersion and spatially dependent coefficients. J. Mod. Opt. 63(10), 950-954 (2016) · doi:10.1080/09500340.2015.1111456
[24] Zhou, Q., Liu, L., Zhang, H., Mirzazadeh, M., Bhrawy, A.L.I.H., Zerrad, E., Moshokoa, S., Biswas, A.: Dark and singular optical solitons with competing nonlocal nonlinearities. Opt. Appl. 46(1), 79-86 (2016)
[25] Eslami, M., Vajargah, B.F., Mirzazadeh, M., Biswas, A.: Application of first integral method to fractional partial differential equations. Indian J. Phys. 88(2), 177-184 (2014) · doi:10.1007/s12648-013-0401-6
[26] Mirzazadeh, M., Eslami, M., Biswas, A.: Soliton solutions of the generalized Klein-Gordon equation by using <InlineEquation ID=”IEq85“> <EquationSource Format=”TEX“>\[ \left(\frac{G^{\prime }}{G}\right)\] <EquationSource Format=”MATHML“> <math xmlns:xlink=”http://www.w3.org/1999/xlink“> <mfenced close=”)“ open=”(“ separators=”> G′G-expansion method. Comput. Appl. Math. 33(3), 831-839 (2014) · Zbl 1307.35249 · doi:10.1007/s40314-013-0098-3
[27] Zhou, Q., Zhong, Y., Mirzazadeh, M., Bhrawy, A.H., Zerrad, E., Biswas, A.: Thirring combo-solitons with cubic nonlinearity and spatio-temporal dispersion. Waves Random Complex Media 26(2), 204-210 (2016) · Zbl 1378.35289 · doi:10.1080/17455030.2015.1132863
[28] Biswas, A., Bhrawy, A.H., Abdelkawy, M.A., Alshaery, A.A., Hilal, E.M.: Symbolic computation of some nonlinear fractional differential equations. Rom. J. Phys. 59(5-6), 433-442 (2014)
[29] Bhrawy, A.H., Abdelkawy, M.A., Kumar, S., Johnson, S., Biswas, A.: Solitons and other solutions to quantum Zakharov-Kuznetsov equation in quantum magneto-plasmas. Indian J. Phys. 87(5), 455-463 (2013) · doi:10.1007/s12648-013-0248-x
[30] Ebadi, G., Fard, N.Y., Bhrawy, A.H., Kumar, S., Triki, H., Yildirim, A., Biswas, A.: Solitons and other solutions to the (3 + 1)-dimensional extended Kadomtsev-Petviashvili equation with power law nonlinearity. Rom. Rep. Phys. 65(1), 27-62 (2013)
[31] Bhrawy, A.H., Doha, E.H., Ezz-Eldien, S.S., Abdelkawy, M.A.: A numerical technique based on the shifted Legendre polynomials for solving the time-fractional coupled KdV equations. Calcolo 53(1), 1-17 (2016) · Zbl 1335.65083 · doi:10.1007/s10092-014-0132-x
[32] Bhrawy, A.H., Doha, E.H., Ezz-Eldien, S.S., Abdelkawy, M.A.: A Jacobi spectral collocation scheme based on operational matrix for time-fractional modified Korteweg-de Vries equations. CMES Comput. Model. Eng. Sci. 104(3), 185-209 (2015)
[33] Bhrawy, A.H., Al-Shomrani, M.M.: A Jacobi dual-Petrov Galerkin-Jacobi collocation method for solving Korteweg-de Vries equations. Abstr. Appl. Anal. 2012, 1-16 (2012). doi:10.1155/2012/418943 · Zbl 1253.65158
[34] Yan, Z., Liu, X.: Symmetry and similarity solutions of variable coefficients generalized Zakharov-Kuznetsov equation. Appl. Math. Comput. 180(1), 288-294 (2006) · Zbl 1109.35101
[35] Yang, L., Yang, K., Luo, H.: Complex version KdV equation and the periods solution. Phys. Lett. A 267(5), 331-334 (2000) · Zbl 0944.35080 · doi:10.1016/S0375-9601(00)00128-6
[36] Zhang, Y., Lv, Y., Ye, L., Zhao, H.: The exact solutions to the complex KdV equation. Phys. Lett. A 367(6), 465-472 (2007) · Zbl 1209.35123 · doi:10.1016/j.physleta.2007.03.093
[37] Singh, K., Gupta, R.K.: On symmetries and invariant solutions of a coupled KdV system with variable coefficients. Int. J. Math. Math. Sci. 2005(23), 3711-3725 (2005) · Zbl 1092.35523 · doi:10.1155/IJMMS.2005.3711
[38] Nutku, Y.: Bi-Hamiltonian structure of a pair of coupled kdv equations. Il Nuovo Cimento B (1971-1996) 105(12), 1381-1383 (1990) · doi:10.1007/BF02742693
[39] Fuchssteiner, B.: The Lie algebra structure of degenerate Hamiltonian and bi-Hamiltonian systems. Prog. Theor. Phys. 68(4), 1082-1104 (1982) · Zbl 1098.37540
[40] Drinfel’d, V.G., Sokolov, V.V.: Lie algebras and equations of Korteweg-de Vries type. J. Sov. Math. 30(2), 1975-2036 (1985) · Zbl 0578.58040 · doi:10.1007/BF02105860
[41] Hirota, R., Satsuma, J.: Soliton solutions of a coupled Korteweg-de Vries equation. Phys. Lett. A 85(8-9), 407-408 (1981) · doi:10.1016/0375-9601(81)90423-0
[42] Lou, S.Y., Tong, B., Hu, H., Tang, X.: Coupled KdV equations derived from two-layer fluids. J. Phys. A Math. Gen. 39(3), 513 (2005) · Zbl 1082.76023 · doi:10.1088/0305-4470/39/3/005
[43] Brazhnyi, V.A., Konotop, V.V.: Stable and unstable vector dark solitons of coupled nonlinear Schrödinger equations: application to two-component Bose-Einstein condensates. Phys. Rev. E 72(2), 026616 (2005) · doi:10.1103/PhysRevE.72.026616
[44] Yan, Z., Zhou, J., Liu, X.: Symmetry reductions and similarity solutions of the (3 + 1)-dimensional breaking soliton equation. Appl. Math. Comput. 201(1), 333-339 (2008) · Zbl 1154.35444
[45] Olver, P.J.: Applications of Lie Groups to Differential Equations, vol. 107. Springer, New York (1986) · Zbl 0588.22001
[46] Ovsiannikov, L.V.: Group Analysis of Differential Equations. Academic Press, New York (1982) · Zbl 0485.58002
[47] Kumar, S., Singh, K., Gupta, R.K.: Painlevé analysis, Lie symmetries and exact solutions for (2 + 1)-dimensional variable coefficients Broer-Kaup equations. Commun. Nonlinear Sci. Numer. Simul. 17(4), 1529-1541 (2012) · Zbl 1245.35096 · doi:10.1016/j.cnsns.2011.09.003
[48] Wang, M., Li, X., Zhang, J.: The <InlineEquation ID=”IEq87“> <EquationSource Format=”TEX“>\[ \left(\frac{G^{\prime }}{G}\right)\] <EquationSource Format=”MATHML“> <math xmlns:xlink=”http://www.w3.org/1999/xlink“> <mfenced close=”)“ open=”(“ separators=”> G′G-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics. Phys. Lett. A 372(4), 417-423 (2008) · Zbl 1217.76023 · doi:10.1016/j.physleta.2007.07.051
[49] Kumar, S., Singh, K., Gupta, R.K.: Coupled Higgs field equation and Hamiltonian amplitude equation: Lie classical approach and <InlineEquation ID=”IEq89“> <EquationSource Format=”TEX“>\[ \left(\frac{G^{\prime }}{G}\right)\] <EquationSource Format=”MATHML“> <math xmlns:xlink=”http://www.w3.org/1999/xlink“> <mfenced close=”)“ open=”(“ separators=”> G′G-expansion method. Pramana 79(1), 41-60 (2012) · doi:10.1007/s12043-012-0284-7
[50] Zhu, S.D.: The generalizing Riccati equation mapping method in non-linear evolution equation: application to (2+ 1)-dimensional Boiti-Leon-Pempinelle equation. Chaos Solitons Fractals 37(5), 1335-1342 (2008) · Zbl 1142.35597 · doi:10.1016/j.chaos.2006.10.015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.