×

Numerical approach for solving neutral differential equation with deviating argument. (English) Zbl 1325.65097

Summary: The numerical solution of a neutral differential equation with deviating argument by means of the sinc scheme and fixed point theorem is considered. Properties of the double exponential-sinc and single exponential-sinc quadratures are utilized to reduce the computation of the neutral differential equations to an iterative technique. Then convergence of this technique is discussed by preparing a theorem. To guarantee the analytical results and to show the efficiency and accuracy of the present method, some examples are presented.

MSC:

65L03 Numerical methods for functional-differential equations
65L05 Numerical methods for initial value problems involving ordinary differential equations
34K28 Numerical approximation of solutions of functional-differential equations (MSC2010)
34K40 Neutral functional-differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] N. V. Azbelev, V. P. Maksimov, and L. F. Rakhmatullina, Introduction to Theory of Functional-Differential Equations (Nauka, Moscow, 1990). · Zbl 0725.34071
[2] J. Banas, “Applications of measures of noncompactness to various problems,” Zesz. Nauk. Polit. Rzeszow., Mat. Fiz. z. 5, No. 34 (1987). · Zbl 0619.47044
[3] C. Corduneanu, Integral Equations and Applications (Cambridge Univ. Press, Cambridge, 1991). · Zbl 0714.45002
[4] K. Deimling, Nonlinear Functional Analysis (Springer-Verlag, Berlin, 1985). · Zbl 0559.47040
[5] R. D. Driver, Ordinary and Delay Differential Equations (Springer-Verlag, Berlin, 1977). · Zbl 0374.34001
[6] J. Hale and S. M. Veiduyn Lunel, Introduction to Functional Differential Equations (Springer-Verlag, New York, 1993). · Zbl 0787.34002
[7] G. A. Kamenski, “On the general theory of equations with deviating argument,” Dokl. Akad. Nauk SSSR 120, 697-700 (1958). · Zbl 0085.07902
[8] V. Kolmanovskii and A. Myshkis, Introduction to the Theory and Applications of Functional Differential Equations (Kluwer Academic, Dordrecht, 1999). · Zbl 0917.34001
[9] Y. Kuong, Delay Differential Equations with Applications in Population Dynamics (Academic, Boston, 1993) · Zbl 0267.65089
[10] M. Zima, Positive Operators in Banach Spaces and Their Applications (Wyd. Uniw. Rzeszowskiego, Rzeszow, 2005) · Zbl 1165.47002
[11] J. Banas and I. J. Cabrerab, “On solutions of a neutral differential equation with deviating argument,” Math. Comput. Model. 44, 1080-1088 (2006). · Zbl 1187.34109 · doi:10.1016/j.mcm.2006.03.012
[12] K. Maleknejad and E. Najafi, “Numerical solution of nonlinear Volterra integral equations using the idea of quasilinearization,” Commun. Nonlinear Sci. Numer. Simul. 16 (1), 93-100 (2011). · Zbl 1221.65336 · doi:10.1016/j.cnsns.2010.04.002
[13] K. Atkinson and W. Han, Theoretical Numerical Analysis: A Functional Analysis Framework (Springer, New York, 2007). · Zbl 0966.65001
[14] K. Atkinson, The Numerical Solution of Integral Equations of the Second Kind (Cambridge Univ. Press, Cambridge, 1997). · Zbl 0899.65077
[15] A. H. Borzabadi and O. S. Fard, “Numerical scheme for a class of nonlinear Fredholm integral equations of the second kind,” J. Comput. Appl. Math. 232, 449-454 (2009). · Zbl 1179.65160 · doi:10.1016/j.cam.2009.06.038
[16] C. T. Kelley, “Approximation of solutions of some quadratic integral equations in transport theory,” J. Integral Equations 4, 221-237 (1982). · Zbl 0495.45010
[17] R. Kress, Linear Integral Equations (Springer, Berlin, 1989). · Zbl 0671.45001
[18] A. Sommariva, “A fast Nyström-Broyden solver by Chebyshev compression,” Numer. Algorithms 38, 47-60 (2005). · Zbl 1076.65125 · doi:10.1007/BF02810617
[19] E. Zeidler, Nonlinear Functional Analysis and Its Applications, Vol. 1: Fixed Point Theorems (Springer-Verlag, Berlin, 1986). · Zbl 0583.47050
[20] K. Maleknejad and K. Nedaiasl, “Application of sinc-collocation method for solving a class of nonlinear Fredholm integral equations,” Comput. Math. Appl. 62 (8), 3292-3303 (2011). · Zbl 1232.65184 · doi:10.1016/j.camwa.2011.08.045
[21] L. Brutman, “An application of the generalized alternating polynomials to the numerical solution of Fredholm integral equations,” Numer. Algorithms 5, 437-442 (1993). · Zbl 0791.65100 · doi:10.1007/BF02109184
[22] W. Petryshyn, “Projection methods in nonlinear numerical functional analysis,” J. Math. Mech. 17, 353-372 (1967). · Zbl 0162.20202
[23] H. R. Marzban, H. R. Tabrizidooz, and M. Razzaghi, “A composite collocation method for the nonlinear mixed Volterra-Fredholm-Hammerstein integral equations,” Commun Nonlinear Sci. Numer Simul. 16 (3), 1186-1194 (2011). · Zbl 1221.65340 · doi:10.1016/j.cnsns.2010.06.013
[24] K. Maleknejad and M. Nosrati Sahlan, “The method of moments for solution of second kind Fredholm integral equations based on B-spline wavelets,” Int. J. Comput. Math. 87 (7), 1602-1616 (2010). · Zbl 1197.65228 · doi:10.1080/00207160802406523
[25] G. Q. Han, “Extrapolation of a discrete collocation-type method of Hammerstein equations,” J. Comput. Appl. Math. 61, 73-86 (1995). · Zbl 0841.65133 · doi:10.1016/0377-0427(94)00049-7
[26] G. Q. Han and L. Zhang, “Asymptotic error expansion of a collocation-type method for Hammerstein equations,” Appl. Math. Comput. 72, 1-19 (1995). · Zbl 0834.65138 · doi:10.1016/0096-3003(94)00160-6
[27] H. Kaneko, R. D. Noren, and P. A. Padilla, “Superconvergence of the iterated collocation methods for Hammerstein equations,” J. Comput. Appl. Math. 80, 335-349 (1997). · Zbl 0883.65115 · doi:10.1016/S0377-0427(97)00040-X
[28] K. Maleknejad, H. Almasieh, and M. Roodaki, “Triangular functions (TF) method for the solution of nonlinear Volterra-Fredholm integral equations,” Commun. Nonlinear Sci. Numer. Simul. 15, 3293-3298 (2010). · Zbl 1222.65147 · doi:10.1016/j.cnsns.2009.12.015
[29] S. Kumar and l. Sloan, “A new collocation-type method for Hammerstein equations,” Math. Comput. 48, 585-593 (1987). · Zbl 0616.65142 · doi:10.1090/S0025-5718-1987-0878692-4
[30] K. Maleknejad, M. Karami, and M. Rabbani, “Using the Petrov-Galerkin elements for solving Hammerstein integral equations,” Appl. Math. Comput. 172 (2), 831-845 (2006). · Zbl 1088.65116 · doi:10.1016/j.amc.2005.02.041
[31] K. Maleknejad and M. Karami, “Numerical solution of nonlinear Fredholm integral equations by using multiwavelets in the Petrov-Galerkin method,” Appl. Math. Comput. 168, 102-110 (2005). · Zbl 1082.65597 · doi:10.1016/j.amc.2004.08.047
[32] W. Petryshyn, “Projection methods in nonlinear numerical functional analysis,” J. Math. Mech. 17, 353-372 (1967). · Zbl 0162.20202
[33] C. Allouch, P. Sablonniere, and D. Sbibih, “Solving Fredholm integral equations by approximating kernels by spline quasi-interpolants,” Numer. Algorithms 56 (3), 437-453 (2011). · Zbl 1211.65171 · doi:10.1007/s11075-010-9396-7
[34] G. Micula and S. Micula, Handbook of Splines (Kluwer Academic, Dordrecht, 1999). · Zbl 0914.65003
[35] F. De. Hoog and R. Weiss, “Asymptotic expansions for product integration” Math. Comput. 27, 295-306 (1973). · Zbl 0303.65023 · doi:10.1090/S0025-5718-1973-0329207-0
[36] S. Abbasbandy and E. Shivanian, “A new analytical technique to solve Fredholm integral equations,” Numer. Algorithms 56 (1), 27-43 (2011). · Zbl 1208.45006 · doi:10.1007/s11075-010-9372-2
[37] S. Abbasbandy, “Numerical solutions of the integral equations: Homotopy perturbation method and Adomian’s decomposition method,” Appl. Math. Comput. 173, 493-500 (2006). · Zbl 1090.65143 · doi:10.1016/j.amc.2005.04.077
[38] E. Babolian, J. Biazar, and A. R. Vahidi, “The decomposition method applied to systems of Fredholm integral equations of the second kind,” Appl. Math. Comput. 148, 443-452 (2004). · Zbl 1042.65104 · doi:10.1016/S0096-3003(02)00859-7
[39] A. H. Borzabadi, A. V. Kamyad, and H. H. Mehne, “A different approach for solving the nonlinear Fredholm integral equations of the second kind,” Appl. Math. Comput. 173, 724-735 (2006). · Zbl 1092.65117 · doi:10.1016/j.amc.2005.04.008
[40] C. T. Kelley, “A fast two-grid method for matrix H-equations,” Trans. Theory Stat. Phys. 18, 185-204 (1989). · Zbl 0684.65114 · doi:10.1080/00411458908204320
[41] K. Atkinson, “Iterative variants of the Nyström method for the numerical solution of integral equations,” Numer. Math. 22, 17-31 (1973). · Zbl 0267.65089 · doi:10.1007/BF01436618
[42] K. Atkinson, “The numerical evaluation of fixed points for completely continuous operators,” SIAM J. Numer. Anal. 10, 799-807 (1973). · Zbl 0237.65040 · doi:10.1137/0710065
[43] G. Q. Han, “Asymptotic expansion for the Nyström method for nonlinear Fredholm integral equations of the second kind,” BIT Numer. Math. 34, 254-262 (1994). · Zbl 0809.65136 · doi:10.1007/BF01955872
[44] G. Mastroiani and G. Monegato, “Some new applications of truncated Gauss-Laguerre quadrature formulas,” Numer. Algorithms 49, 283-297 (2008). · Zbl 1181.65044 · doi:10.1007/s11075-008-9191-x
[45] O. Hübner, “The Newton method for solving the Theodorsen integral equation,” J. Comput. Appl. Math. 14, 19-30 (1986). · Zbl 0582.30006 · doi:10.1016/0377-0427(86)90129-9
[46] C. T. Kelley and J. Northrup, “A pointwise quasi-Newton method for integral equations,” SIAM J. Numer. Anal. 25, 1138-1155 (1988). · Zbl 0661.65142 · doi:10.1137/0725065
[47] C. T. Kelley and E. Sachs, “Broyden’s method for approximate solution of nonlinear integral equations,” J. Integral Equations 9, 25-43 (1985). · Zbl 0576.65055
[48] M. Shimasaki and T. Kiyono, “Numerical solution of integral equations by Chebyshev series,” Numer. Math. 21, 373-380 (1973). · Zbl 0255.65044 · doi:10.1007/BF01436487
[49] E. Babolian, S. Abbasbandy, and F. Fattahzadeh, “A numerical method for solving a class of functional and two dimensional integral equations,” Appl. Math. Comput. 198, 35-43 (2008). · Zbl 1137.65065 · doi:10.1016/j.amc.2007.08.051
[50] S. Abbasbandy, “Application of He’s homotopy perturbation method to functional integral equations,” Chaos Solitons Fractals 31, 1243-1247 (2007). · Zbl 1139.65085 · doi:10.1016/j.chaos.2005.10.069
[51] M. T. Rashed, “Numerical solution of functional differential, integral and integro-differential equations,” Appl. Math. Comput. 156, 485-492 (2004). · Zbl 1061.65146 · doi:10.1016/j.amc.2003.08.021
[52] M. T. Rashed, “Numerical solution of functional integral equations,” Appl. Math. Comput. 156, 507-512 (2004). · Zbl 1061.65147 · doi:10.1016/j.amc.2003.08.003
[53] F. Stenger, Numerical Methods Based on Sine and Analytic Functions (Springer-Verlag, New York, 1993). · Zbl 0803.65141
[54] J. Lund and K. Bowers, Sine Methods for Quadrature and Differential Equations (SIAM, Philadelphia, 1992). · Zbl 0753.65081
[55] X. Wu and Kong W. Li, “A sinc-collocation method with boundary treatment for two-dimensional elliptic boundary value problems,” J. Comput. Appl. Math. 196 (2), 58-69 (2006). · Zbl 1096.65118 · doi:10.1016/j.cam.2005.08.022
[56] M. S. Sababheh and A. M. N. Al-Khaled, “Some convergence results on sine interpolation,” J. Inequal. Pure Appl. Math. 4, 32-48 (2003).
[57] H. Takahasi and M. Mori, “Double exponential formulas for numerical integration,” Publ. RIMS Kyoto Univ. 9, 721-741 (1974). · Zbl 0293.65011 · doi:10.2977/prims/1195192451
[58] Mori, M., Quadrature formulas obtained by variable transformation and the DE-rule, 12-13, 119-130 (1985) · Zbl 0589.65019
[59] M. Mori, “Developments in the double exponential formulas for numerical integration,” Proceedings of the International Congress of Mathematicians, August 21-29, 1990, Kyoto, Ed. by I. Satake (Springer, Berlin, 1991), pp. 1585-1594. · Zbl 0743.65016
[60] J. Banas and K. Goebel, “Measures of noncompactness in Banach space · Zbl 0441.47056
[61] J. Banas, “Measures of noncompactness in the space of continuous tempered functions,” Demonstratio Math. 14, 127-133 (1981). · Zbl 0462.47035
[62] K. Tanaka, M. Sugihara, and K. Murota, “Function classes for successful DE-sinc approximations,” Math. Comput. 78, 1553-1571 (2009). · Zbl 1198.65037 · doi:10.1090/S0025-5718-08-02196-0
[63] K. Tanaka, M. Sugihara, K. Murota, and M. Mori, “Function classes for double exponential integration formulas,” Numer. Math. 111, 631-655 (2009). · Zbl 1162.65014 · doi:10.1007/s00211-008-0195-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.