×

On Finsler geometry and applications in mechanics: review and new perspectives. (English) Zbl 1375.53030

Summary: In Finsler geometry, each point of a base manifold can be endowed with coordinates describing its position as well as a set of one or more vectors describing directions, for example. The associated metric tensor may generally depend on direction as well as position, and a number of connections emerge associated with various covariant derivatives involving affine and nonlinear coefficients. Finsler geometry encompasses Riemannian, Euclidean, and Minkowskian geometries as special cases, and thus it affords great generality for describing a number of phenomena in physics. Here, descriptions of finite deformation of continuous media are of primary focus. After a review of necessary mathematical definitions and derivations, prior work involving application of Finsler geometry in continuum mechanics of solids is reviewed. A new theoretical description of continua with microstructure is then outlined, merging concepts from Finsler geometry and phase field theories of materials science.

MSC:

53B40 Local differential geometry of Finsler spaces and generalizations (areal metrics)
74A60 Micromechanical theories
53B50 Applications of local differential geometry to the sciences
53C60 Global differential geometry of Finsler spaces and generalizations (areal metrics)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Truesdell, C. A.; Toupin, R. A.; Flugge, S., The classical field theories, Handbuch der Physik, 3/1, 226-793 (1960), Berlin, Germany: Springer, Berlin, Germany
[2] Eringen, A. C., Nonlinear Theory of Continuous Media (1962), New York, NY, USA: McGraw-Hill, New York, NY, USA
[3] Eringen, A. C.; Eringen, A. C., Tensor analysis, Continuum Physics, 1, 1-155 (1971), New York, NY, USA: Academic Press, New York, NY, USA
[4] Toupin, R. A., Theories of elasticity with couple-stress, Archive for Rational Mechanics and Analysis, 17, 85-112 (1964) · Zbl 0131.22001 · doi:10.1007/BF00253050
[5] Clayton, J. D., On anholonomic deformation, geometry, and differentiation, Mathematics and Mechanics of Solids, 17, 7, 702-735 (2012) · Zbl 07278886 · doi:10.1177/1081286511429887
[6] Clayton, J. D., Nonlinear Mechanics of Crystals (2011), Dordrecht, The Netherlands: Springer, Dordrecht, The Netherlands · Zbl 1209.74001
[7] Bilby, B. A.; Bullough, R.; Smith, E., Continuous distributions of dislocations: a new application of the methods of non-Riemannian geometry, Proceedings of the Royal Society A, 231, 263-273 (1955) · doi:10.1098/rspa.1955.0171
[8] Kröner, E., Allgemeine kontinuumstheorie der versetzungen und eigenspannungen, Archive for Rational Mechanics and Analysis, 4, 273-334 (1960) · Zbl 0090.17601
[9] Kondo, K., On the analytical and physical foundations of the theory of dislocations and yielding by the differential geometry of continua, International Journal of Engineering Science, 2, 219-251 (1964) · Zbl 0143.45203 · doi:10.1016/0020-7225(64)90022-9
[10] Bilby, B. A.; Gardner, L. R. T.; Grinberg, A.; Zorawski, M., Continuous distributions of dislocations. VI. Non-metric connexions, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 292, 1428, 105-121 (1966) · Zbl 0151.37102 · doi:10.1098/rspa.1966.0122
[11] Noll, W., Materially uniform simple bodies with inhomogeneities, Archive for Rational Mechanics and Analysis, 27, 1, 1-32 (1967) · Zbl 0168.45701 · doi:10.1007/bf00276433
[12] Kondo, K., Fundamentals of the theory of yielding elementary and more intrinsic expositions: riemannian and non-riemannian terminology, Matrix and Tensor Quarterly, 34, 55-63 (1984)
[13] Clayton, J. D.; Bammann, D. J.; McDowell, D. L., A geometric framework for the kinematics of crystals with defects, Philosophical Magazine, 85, 33-35, 3983-4010 (2005) · doi:10.1080/14786430500363312
[14] Clayton, J. D., Defects in nonlinear elastic crystals: differential geometry, finite kinematics, and second-order analytical solutions, Zeitschrift für Angewandte Mathematik und Mechanik (2013) · Zbl 1326.74024 · doi:10.1002/zamm.201300142
[15] Yavari, A.; Goriely, A., The geometry of discombinations and its applications to semi-inverse problems in anelasticity, Proceedings of the Royal Society of London A, 470, article 0403 (2014) · Zbl 1320.74023 · doi:10.1098/rspa.2014.0403
[16] Edelen, D. G. B.; Lagoudas, D. C., Gauge Theory and Defects in Solids (1988), Amsterdam, The Netherlands: North-Holland Publishing, Amsterdam, The Netherlands · Zbl 0659.73002
[17] Kunin, I. A., Kinematics of media with continuously changing topology, International Journal of Theoretical Physics, 29, 11, 1167-1176 (1990) · Zbl 0713.73003 · doi:10.1007/bf00672929
[18] Weyl, H., Space-Time-Matter (1952), New York, NY, USA: Dover, New York, NY, USA · Zbl 0044.22704
[19] Schouten, J. A., Ricci Calculus (1954), Berlin, Germany: Springer, Berlin, Germany · Zbl 0057.37803
[20] Ericksen, J. L.; Flugge, S., Tensor Fields, Handbuch der Physik, 3, 794-858 (1960), Berlin, Germany: Springer, Berlin, Germany
[21] Thomas, T. Y., Tensor Analysis and Differential Geometry (1965), New York, NY, USA: Academic Press, New York, NY, USA · Zbl 0127.12002
[22] Grinfeld, M. A., Thermodynamic Methods in the Theory of Heterogeneous Systems (1991), Sussex, UK: Longman, Sussex, UK · Zbl 0752.73001
[23] Stumpf, H.; Hoppe, U., The application of tensor algebra on manifolds to nonlinear continuum mechanics—invited survey article, Zeitschrift für Angewandte Mathematik und Mechanik, 77, 5, 327-339 (1997) · Zbl 0883.73032 · doi:10.1002/zamm.19970770504
[24] Grinfeld, P., Introduction to Tensor Analysis and the Calculus of Moving Surfaces (2013), New York, NY, USA: Springer, New York, NY, USA · Zbl 1300.53001
[25] Steinmann, P.; Altenbach, H.; Eremeyev, V. A., On the roots of continuum mechanics in differential geometry—a review, Generalized Continua from the Theory to Engineering Applications. Generalized Continua from the Theory to Engineering Applications, CISM International Centre for Mechanical Sciences, 541, 1-64 (2013), Udine, Italy: Springer, Udine, Italy · Zbl 1279.74007 · doi:10.1007/978-3-7091-1371-4_1
[26] Clayton, J. D., Differential Geometry and Kinematics of Continua (2014), Singapore: World Scientific, Singapore
[27] Eremeyev, V. A.; Lebedev, L. P.; Altenbach, H., Foundations of Micropolar Mechanics. Foundations of Micropolar Mechanics, Springer Briefs in Applied Sciences and Technology (2013), Heidelberg, Germany: Springer, Heidelberg, Germany · Zbl 1257.74002 · doi:10.1007/978-3-642-28353-6
[28] Finsler, P., Über Kurven und Flächen in allgemeinen Räumen [Dissertation] (1918), Gottingen, Germany · JFM 46.1131.02
[29] Rund, H., The Differential Geometry of Finsler Spaces (1959), Berlin, Germany: Springer, Berlin, Germany · Zbl 0087.36604
[30] Bejancu, A., Finsler Geometry and Applications (1990), New York, NY, USA: Ellis Horwood, New York, NY, USA · Zbl 0702.53001
[31] Bao, D.; Chern, S.-S.; Shen, Z., An Introduction to Riemann-Finsler Geometry (2000), New York, NY, USA: Springer, New York, NY, USA · Zbl 0954.53001 · doi:10.1007/978-1-4612-1268-3
[32] Bejancu, A.; Farran, H. R., Geometry of Pseudo-Finsler Submanifolds (2000), Dordrecht, The Netherlands: Kluwer Academic Publishers, Dordrecht, The Netherlands · Zbl 0999.53046 · doi:10.1007/978-94-015-9417-2
[33] Kröner, E., Interrelations between various branches of continuum mechanics, Mechanics of Generalized Continua, 330-340 (1968), Berlin, Germany: Springer, Berlin, Germany · Zbl 0187.48603 · doi:10.1007/978-3-662-30257-6_40
[34] Cartan, E., Les Espaces de Finsler (1934), Paris, France: Hermann, Paris, France · JFM 60.0648.04
[35] Ikeda, S., A physico-geometrical consideration on the theory of directors in the continuum mechanics of oriented media, The Tensor Society, Tensor: New Series, 27, 361-368 (1973) · Zbl 0273.73007
[36] Saczuk, J., On the role of the Finsler geometry in the theory of elasto-plasticity, Reports on Mathematical Physics, 39, 1, 1-17 (1997) · Zbl 0896.73018 · doi:10.1016/s0034-4877(97)81467-x
[37] Fu, M. F.; Saczuk, J.; Stumpf, H., On fibre bundle approach to a damage analysis, International Journal of Engineering Science, 36, 15, 1741-1762 (1998) · Zbl 1210.74013 · doi:10.1016/S0020-7225(98)00021-4
[38] Stumpf, H.; Saczuk, J., A generalized model of oriented continuum with defects, Zeitschrift für Angewandte Mathematik und Mechanik, 80, 3, 147-169 (2000) · Zbl 1072.74502
[39] Saczuk, J., Continua with microstructure modelled by the geometry of higher-order contact, International Journal of Solids and Structures, 38, 6-7, 1019-1044 (2001) · Zbl 1007.74017 · doi:10.1016/S0020-7683(00)00071-8
[40] Saczuk, J.; Hackl, K.; Stumpf, H., Rate theory of nonlocal gradient damage-gradient viscoinelasticity, International Journal of Plasticity, 19, 5, 675-706 (2003) · Zbl 1134.74338 · doi:10.1016/S0749-6419(02)00004-9
[41] Ikeda, S., On the theory of fields in Finsler spaces, Journal of Mathematical Physics, 22, 6, 1215-1218 (1981) · Zbl 0464.53028 · doi:10.1063/1.525032
[42] Brandt, H. E., Differential geometry of spacetime tangent bundle, International Journal of Theoretical Physics, 31, 3, 575-580 (1992) · Zbl 0742.53029 · doi:10.1007/BF00740006
[43] Suhendro, I., A new Finslerian unified field theory of physical interactions, Progress in Physics, 4, 81-90 (2009)
[44] Chern, S.-S., Local equivalence and Euclidean connections in Finsler spaces, Scientific Reports of National Tsing Hua University Series A, 5, 95-121 (1948) · Zbl 0200.00004
[45] Yano, K.; Davies, E. T., On the connection in Finsler space as an induced connection, Rendiconti del Circolo Matematico di Palermo, Serie II, 3, 409-417 (1954) · Zbl 0058.16102 · doi:10.1007/bf02849268
[46] Deicke, A., Finsler spaces as non-holonomic subspaces of Riemannian spaces, Journal of the London Mathematical Society, 30, 53-58 (1955) · Zbl 0064.16404
[47] Ikeda, S., A geometrical construction of the physical interaction field and its application to the rheological deformation field, Tensor, 24, 60-68 (1972) · Zbl 0253.73012
[48] Takano, Y., Theory of fields in Finsler spaces. I, Progress of Theoretical Physics, 40, 1159-1180 (1968) · doi:10.1143/ptp.40.1159
[49] Clayton, J. D.; McDowell, D. L.; Bammann, D. J., Modeling dislocations and disclinations with finite micropolar elastoplasticity, International Journal of Plasticity, 22, 2, 210-256 (2006) · Zbl 1101.74018 · doi:10.1016/j.ijplas.2004.12.001
[50] Hasebe, T., Interaction fields based on incompatibility tensor in field theory of plasticity-part I: theory, Interaction and Multiscale Mechanics, 2, 1, 1-14 (2009)
[51] Clayton, J. D., Dynamic plasticity and fracture in high density polycrystals: constitutive modeling and numerical simulation, Journal of the Mechanics and Physics of Solids, 53, 2, 261-301 (2005) · Zbl 1101.74020 · doi:10.1016/j.jmps.2004.06.009
[52] Mayeur, J. R.; McDowell, D. L.; Bammann, D. J., Dislocation-based micropolar single crystal plasticity: comparison of multi- and single criterion theories, Journal of the Mechanics and Physics of Solids, 59, 2, 398-422 (2011) · Zbl 1270.74044 · doi:10.1016/j.jmps.2010.09.013
[53] Clayton, J. D.; Knap, J., A phase field model of deformation twinning: nonlinear theory and numerical simulations, Physica D. Nonlinear Phenomena, 240, 9-10, 841-858 (2011) · Zbl 1211.74051 · doi:10.1016/j.physd.2010.12.012
[54] Clayton, J. D.; Knap, J., A geometrically nonlinear phase field theory of brittle fracture, International Journal of Fracture, 189, 2, 139-148 (2014) · doi:10.1007/s10704-014-9965-1
[55] Clayton, J. D.; McDowell, D. L., A multiscale multiplicative decomposition for elastoplasticity of polycrystals, International Journal of Plasticity, 19, 9, 1401-1444 (2003) · Zbl 1114.74358 · doi:10.1016/S0749-6419(02)00109-2
[56] Clayton, J. D., An alternative three-term decomposition for single crystal deformation motivated by non-linear elastic dislocation solutions, The Quarterly Journal of Mechanics and Applied Mathematics, 67, 1, 127-158 (2014) · Zbl 1357.74015 · doi:10.1093/qjmam/hbt026
[57] Emmerich, H., The Diffuse Interface Approach in Materials Science: Thermodynamic Concepts and Applications of Phase-Field Models (2003), Berlin, Germany: Springer, Berlin, Germany · Zbl 1039.74001
[58] Voyiadjis, G. Z.; Mozaffari, N., Nonlocal damage model using the phase field method: theory and applications, International Journal of Solids and Structures, 50, 20-21, 3136-3151 (2013) · doi:10.1016/j.ijsolstr.2013.05.015
[59] Levitas, V. I.; Levin, V. A.; Zingerman, K. M.; Freiman, E. I., Displacive phase transitions at large strains: phase-field theory and simulations, Physical Review Letters, 103, 2 (2009) · doi:10.1103/physrevlett.103.025702
[60] Clayton, J. D., Phase field theory and analysis of pressure-shear induced amorphization and failure in boron carbide ceramic, AIMS Materials Science, 1, 3, 143-158 (2014) · doi:10.3934/matersci.2014.3.143
[61] Boiko, V. S.; Garber, R. I.; Kosevich, A. M., Reversible Crystal Plasticity (1994), New York, NY, USA: AIP Press, New York, NY, USA
[62] Bilby, B. A.; Gardner, L. R. T.; Stroh, A. N., Continuous distributions of dislocations and the theory of plasticity, Proceedings of the 9th International Congress of Applied Mechanics, University de Bruxelles
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.