×

Adequateness and interpretability of objective functions in ordinal data analysis. (English) Zbl 1075.62001

Summary: Objective functions that are applied in ordinal data analysis must be adequate, i.e., carefully adapted to the structure of the observed data. In addition, any analysis of data that is based upon objective functions must lead to interpretable results. After a general characterization of adequate objective functions in ordinal data analysis, therefore, the particular problems of constructing adequate and interpretable dissimilarity coefficients and correlation coefficients in ordinal data analysis, stress measures (stress functions) in non-metric scaling and generalized stress measures or correlation coefficients in any theory of rank estimation will be discussed.

MSC:

62-07 Data analysis (statistics) (MSC2010)
62H20 Measures of association (correlation, canonical correlation, etc.)
62H05 Characterization and structure theory for multivariate probability distributions; copulas
62H99 Multivariate analysis

Software:

KYST
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Arabie, P.; Boormann, S. A., Multidimensional scaling of measures of distances between partitions, J. Math. Psych., 10, 148-203 (1973) · Zbl 0263.92003
[2] Arabie, P.; Carroll, J. D., Multidimensional scaling, (Birnbaum, M. H., Measurement, Judgement, and Decision Making (1998), Academic Press: Academic Press New York), 179-250
[3] Arabie, P.; Hubert, L.; Meulmann, J., The representation of symmetric proximity datadimensions and classifications, Comput. J., 41, 566-577 (1998) · Zbl 0920.68037
[4] Bentler, P. M.; Weeks, D. G., Restricted multidimensional scaling methods for asymmetric proximities, Psychometrika, 47, 201-208 (1982)
[5] Bing, R. H., Metrization of topological spaces, Canad. J. Math., 3, 175-186 (1951) · Zbl 0042.41301
[6] G. Bové, F. Critchley, The representation of asymmetric proximities, Preprint, University of Warwick, 1989.; G. Bové, F. Critchley, The representation of asymmetric proximities, Preprint, University of Warwick, 1989.
[7] Bové, G.; Critchley, F., Metric multidimensional scaling for asymmetric proximities when the asymmetry is one-dimensional, (Steyer, R.; Wender, K. F.; Widaman, K. F., Proceedings of the 7th European Meeting of the Psychommetric Society in Trier (1993), Fischer Verlag: Fischer Verlag Stuttgart), 55-60
[8] Carroll, J. D.; Winsberg, S., Maximum likelihood procedures for metric and quasi-nonmetric fitting of an extended INDSCAL model assuming both common and specific dimensions, (de Leeuw, J.; Heiser, W. J.; Meulman, J.; Critchley, F., Multivariate Data Analysis (1986), DSWO Press: DSWO Press Leiden), 240-241
[9] Carroll, J. D.; Winsberg, S., A quasi-nonmetric method for multidimensional scaling of multiway data via an extended INDSCAL model, (Coppi, R.; Bolasco, S., Multiway Data Analysis (1989), North-Holland: North-Holland Amsterdam), 405-414
[10] Carroll, J. D.; Winsberg, S., A quasi-nonmetric method of multidimensional scaling via an extended euclidean model, Psychometrika, 54, 217-229 (1989)
[11] Carroll, J. D.; Winsberg, S., Fitting an extended INDSCAL model to three-way proximity data, J. Classification, 12, 57-71 (1995)
[12] Charlin, V.; Cliff, N., Variances and covariances of Kendall’s Tau and their estimation, Mult. Behav. Res., 26, 693-707 (1992)
[13] Chino, N., A graphical technique for representing the asymmetric relationships between \(N\) objects, Behaviourmetrika, 5, 23-40 (1978)
[14] Chino, N., A generalized inner product model for the analysis of asymmetry, Behaviourmetrika, 27, 25-46 (1990)
[15] Cliff, N., A theory of consistency of ordering generalizable to tailored testing, Psychometrika, 42, 373-393 (1977) · Zbl 0366.92030
[16] Cliff, N., Test theory without true scores?, Psychometrika, 44, 373-393 (1979)
[17] N. Cliff, Ordinal analogues of multiple regression, Proceedings of the Statistical Section of the American Statistical Association, Washington, DC, 1986, pp. 320-324.; N. Cliff, Ordinal analogues of multiple regression, Proceedings of the Statistical Section of the American Statistical Association, Washington, DC, 1986, pp. 320-324.
[18] Cliff, N., Ordinal consistency and true scores, Psychometrika, 54, 75-91 (1989)
[19] Cliff, N., Predicting ordinal relations, British J. Math. Statist. Psych., 47, 127-150 (1994)
[20] Cliff, N.; Donoghue, J. R., An investigation of ordinal true score test theory, Appl. Psych. Measurement, 15, 335-351 (1992)
[21] Cliff, N.; Donoghue, J. R., Ordinal test fidelity estimated by an item sampling model, Psychometrika, 57, 217-236 (1992)
[22] Critchley, F., Analysis of residuals and regional representation in nonmetric multidimensional scaling, (Gaul, W.; Schader, M., Classification as a Tool of Research (1986), North-Holland: North-Holland Amsterdam), 66-77 · Zbl 0587.62131
[23] de Leeuw, J., Applications of convex analysis to multidimensional scaling, (Barra, J. R.; Brodeau, F.; Romier, G.; van Cutsem, B., Recent Developments in Statistics (1977), North-Holland: North-Holland Amsterdam), 133-145
[24] de Leeuw, J., Correctness of Kruskal’s algorithms for monotone regression with ties, Psychometrika, 42, 141-144 (1977) · Zbl 0352.62067
[25] de Leeuw, J.; Heiser, W. J., Convergence of correction-matrix algorithms for multidimensional scaling, (Lingoes, J. C., Geometric Representations of Relational Data: Readings in Multidimensional Scaling (1977), Mathesis Press: Mathesis Press Ann Arbor), 735-752
[26] de Leeuw, J.; Heiser, W. J., Multidimensional scaling with restrictions on the configuration, (Krishnaiah, P. R., Multivariate Analysis, Vol. 5 (1980), North-Holland: North-Holland Amsterdam), 501-522
[27] de Leeuw, J.; Heiser, W. J., Theory of multidimensional scaling, (Krishnaiah, P. R.; Kanal, L. N., Handbook of Statistics, Classification, Pattern Recognition and Reduction of Dimensionality, Vol. 2 (1982), North-Holland: North-Holland Amsterdam), 285-316
[28] Debreu, G., Representation of a preference ordering by a numerical function, (Thrall, R.; Coombs, C.; Davis, R., Decision Processes (1954), Wiley: Wiley New York), 159-166
[29] Debreu, G., Continuity properties of paretian utility, Internat. Econ. Rev., 5, 285-293 (1964) · Zbl 0138.16301
[30] Droste, M., Ordinal scales in the theory of measurement, J. Math. Psych., 31, 60-82 (1987) · Zbl 0616.92012
[31] Ehrenberg, A. S.C., On sampling from a population of rankers, Biometrika, 39, 82-87 (1952) · Zbl 0046.35901
[32] A.M.W. Glass, Ordered Permutation Groups, 1st Edition, London Mathematical Society Lecture Note series, Vol. 55, Cambridge, 1981.; A.M.W. Glass, Ordered Permutation Groups, 1st Edition, London Mathematical Society Lecture Note series, Vol. 55, Cambridge, 1981. · Zbl 0473.06010
[33] Gower, J. C., The analysis of asymmetry and orthogonality, (Barra, J. R.; Brodeau, F.; Romier, G.; van Cutsem, B., Recent Developments in Statistics (1977), North-Holland: North-Holland Amsterdam), 109-123 · Zbl 0366.62058
[34] Guttman, L., A general nonmetric technique for finding the smallest coordinate space for a configuration of points, Psychometrika, 33, 465-506 (1968) · Zbl 0205.49302
[35] Heiser, W. J., Order invariant unfolding analysis under smoothness restrictions, (de Soete, G.; Feger, H.; Klauer, C., New Developments in Psychological Choice Modelling (1989), North-Holland: North-Holland Amsterdam), 3-31
[36] Heiser, W. J.; Zielman, B., Analysis of asymmetry by a slide vector, Psychometrika, 58, 101-114 (1993) · Zbl 0775.92037
[37] W.J. Heiser, B. Zielman, Models of asymmetric proximities, International Report RR-94-04, Department of Data Theory, University of Leiden, 1994.; W.J. Heiser, B. Zielman, Models of asymmetric proximities, International Report RR-94-04, Department of Data Theory, University of Leiden, 1994. · Zbl 0858.62101
[38] Herden, G., Dissimilarity coefficients for ordinally scaled data, Studien Zur Klassifikation, 17, 270-278 (1987)
[39] Herden, G., Dissimilarity coefficients which are independent of a special set of data, Math. Soc. Sci., 20, 73-90 (1990) · Zbl 0743.62052
[40] Herden, G., Some aspects of qualitative data analysis, Math. Soc. Sci., 26, 105-138 (1993) · Zbl 0798.62003
[41] Herden, G.; Pallack, A., Consistency in ordinal data analysis I, Math. Soc. Sci., 43, 79-113 (2002) · Zbl 1033.91038
[42] G. Herden, G.B. Mehta, Order, topology and utility, Preprint, University of Essen, 2003.; G. Herden, G.B. Mehta, Order, topology and utility, Preprint, University of Essen, 2003.
[43] Holman, E. W., Monotonic models for asymmetric proximities, J. Math. Psych., 20, 1-15 (1979) · Zbl 0434.92024
[44] Hutchinson, J. W., NETSCALa network scaling algorithm for nonsymmetric proximity data, Psychometrika, 54, 25-41 (1989)
[45] Johnson, R. M., A simple method for pairwise monotone regression, Psychometrika, 40, 163-168 (1975) · Zbl 0309.92020
[46] Kendall, M. G., A new measure for rank correlation, Biometrika, 30, 81-93 (1938) · Zbl 0019.13001
[47] Kendall, M. G.; Babington-Smith, B., The problem of \(m\)-rankings, Ann. Math. Statist., 10, 275-287 (1939) · Zbl 0023.24201
[48] Kruskal, J. B., Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis, Psychometrika, 29, 1-27 (1964) · Zbl 0123.36803
[49] J.B. Kruskal, Nonmetric multidimensional scaling: a numerical method, Psychometrika 29 115-129.; J.B. Kruskal, Nonmetric multidimensional scaling: a numerical method, Psychometrika 29 115-129. · Zbl 0123.36804
[50] Kruskal, J. B., Analysis of factorial experiments by estimating monotone transformation of the data, J. Roy. Statist. Soc. Ser. B, 27, 251-263 (1965)
[51] Kruskal, J. B.; Carroll, J. D., Geometrical models and badness-of-fit functions, (Krishnaiah, P. R., Multivariate Analysis II (1969), Academic Press: Academic Press New York), 639-671
[52] Kruskal, J. B.; Young, F. W.; Seery, J. B., How to use KYST, a very flexible program to do multidimensional scaling and unfolding (1973), AT&T Bell Laboratories: AT&T Bell Laboratories Murray Hill
[53] Linhart, H., Approximate tests for \(m\)-rankings, Biometrika, 47, 476-480 (1972) · Zbl 0096.12402
[54] Mathar, R., Algorithms in multidimensional scaling, (Opitz, O., Conceptual and Numerical Analysis of Data (1989), Springer: Springer Heidelberg), 159-177
[55] Mathar, R., Multidimensional scaling with constraints on the configuration, J. Multivariate Anal., 33, 151-156 (1990) · Zbl 0699.62064
[56] Mathar, R., Multidimensionale Skalierung (1997), Teubner: Teubner Stuttgart · Zbl 0947.91502
[57] Nachbin, L., Topologia e ordem (1950), The University of Chicago Press: The University of Chicago Press Chicago, (English transl.: Topology and Order, 1st Edition, Van Nostrand, Princeton, 1965)
[58] Nagata, J., On a necessary and sufficient condition of metrizability, J. Ind. Polytech. Osaka City University, 1, 93-100 (1950)
[59] Okada, A.; Imaizuma, T., Nonmetric method for extended INDSCAL model, Behaviourmetrika, 7, 13-22 (1980)
[60] Okada, A.; Imaizuma, T., Nonmetric multidimensional scaling of asymmetric proximities, Behaviourmetrika, 21, 81-96 (1987)
[61] Pallack, A., Nachhilfelehrer Computer (2002), Franzbecker: Franzbecker Hildesheim
[62] Ramsay, J. O., Monotone weighted power transformation to additivity, Psychometrika, 42, 83-109 (1977) · Zbl 0352.62066
[63] Ramsay, J. O., Monotone splines in action, Statist. Sci., 3, 425-441 (1988)
[64] Ramsay, J. O.; Winsberg, S., Monotonic transformation to additivity using splines, Biometrika, 67, 669-674 (1980) · Zbl 0453.62053
[65] Ramsay, J. O.; Winsberg, S., Monotone spline transformations for dimension reduction, Psychometrika, 48, 575-595 (1983)
[66] Saito, T., Analysis of asymmetric proximity matrix by a model of distance and additive terms, Behaviourmetrika, 29, 45-60 (1991)
[67] Saito, T., Multidimensional scaling for asymmetric proximity data, (Steyer, R.; Wender, K. F.; Widaman, K. F., Psychometric Methodology (1993), Fischer Verlag: Fischer Verlag Stuttgart), 451-456
[68] Saito, T.; Takeda, S., Multidimensional scaling of asymmetric proximitymodel and method, Behaviourmetrika, 28, 49-80 (1990)
[69] Schucancy, W. R.; Frawley, W. H., A rank test for two group concordance, Psychometrika, 38, 249-258 (1973) · Zbl 0281.62098
[70] Schulman, R. S., Correlation and prediction in ordinal test theory, Psychometrika, 41, 329-340 (1976) · Zbl 0341.62081
[71] Schulman, R. S., Individual distributions under ordinal measurement, Psychometrika, 43, 19-29 (1978) · Zbl 0385.62082
[72] Schulman, R. S., Ordinal dataan alternative distribution, Psychometrika, 44, 3-20 (1979) · Zbl 0411.62081
[73] Schulman, R. S.; Haden, R. L., A test theory model for ordinal measurements, Psychometrika, 40, 455-472 (1975) · Zbl 0317.62078
[74] Shepard, R. N., Analysis of proximitiesmultidimensional scaling with an unknown distance function I, Psychometrika, 27, 125-140 (1962) · Zbl 0129.12103
[75] Shepard, R. N., Analysis of proximitiesmultidimensional scaling with an unknown distance function II, Psychometrika, 27, 219-246 (1962) · Zbl 0129.12103
[76] Smirnov, Y. M., A necessary and sufficient condition for metrizability of a topological space, Dokl. Akad. Nauk. SSSR N.S., 77, 197-200 (1951) · Zbl 0042.16801
[77] Smirnov, Y. M., On metrization of topological spaces, Usepehi Mat. Nauk, 6, 100-111 (1951) · Zbl 0045.11704
[78] Spearman, C., The proof and measurement of association between two things, Amer. J. Psych., 15, 72-101 (1904)
[79] Srinivasan, V., Linear programming computational procedures for ordinal regression, J. Assoc. Comput. Mach., 23, 475-487 (1975) · Zbl 0342.90033
[80] Stuart, A., An application of the ranking concordance coefficient, Biometrika, 38, 33-42 (1951) · Zbl 0045.40805
[81] Takane, Y.; Young, F. W.; de Leeuw, J., Nonmetric individual differences multidimensional scalingan alternating least squares method with optimal scaling features, Psychometrika, 42, 7-67 (1977) · Zbl 0354.92048
[82] Torgerson, W. S., Multidimensional scalingI. Theory and method, Psychometrika, 17, 401-419 (1952) · Zbl 0049.37603
[83] Torgerson, W. S., Theory and Methods of Scaling (1958), Wiley: Wiley New York
[84] Trosset, M. W., Distance matrix completion by numerical optimization, Comput. Optim. Appl., 17, 11-22 (2000) · Zbl 0964.65047
[85] Trosset, M. W., Extensions of classical multidimensional scaling via variable reduction, Comput. Statist., 17, 147-163 (2002) · Zbl 1010.62056
[86] Ward, J. H., Hierarchical grouping to optimize an objective function, J. Amer. Statist. Assoc., 58, 236-244 (1963)
[87] Young, F. W., Methods for describing ordinal data with cardinal models, J. Math. Psych., 12, 416-436 (1975) · Zbl 0309.92019
[88] B. Zielmann, Three-way scaling of asymmetric proximities, Unpublished Master Thesis, Department of Data Theory, University of Leiden, 1991.; B. Zielmann, Three-way scaling of asymmetric proximities, Unpublished Master Thesis, Department of Data Theory, University of Leiden, 1991.
[89] Zielman, B., Directional analysis of three-way skew-symmetric matrices, (Opitz, O.; Lausen, B.; Klar, R., Information and Classification (1993), Springer: Springer Heidelberg), 151-161
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.