×

Cylinder partition function of the 6-vertex model from algebraic geometry. (English) Zbl 1437.81060

Summary: We compute the exact partition function of the isotropic 6-vertex model on a cylinder geometry with free boundary conditions, for lattices of intermediate size, using Bethe ansatz and algebraic geometry. We perform the computations in both the open and closed channels. We also consider the partial thermodynamic limits, whereby in the open (closed) channel, the open (closed) direction is kept small while the other direction becomes large. We compute the zeros of the partition function in the two partial thermodynamic limits, and compare with the condensation curves.

MSC:

81T25 Quantum field theory on lattices
80A10 Classical and relativistic thermodynamics

Software:

na20; SINGULAR
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] H.J. de Vega and F. Woynarovich, Method for calculating finite size corrections in bethe Ansatz systems: Heisenberg chain and six vertex model, Nucl. Phys. B251 (1985) 439 [INSPIRE].
[2] F. Woynarovich and H.P. Eckle, Finite-size corrections and numerical calculations for long spin 1/2 Heisenberg chains in the critical region, J. Phys. A20 (1987) L97.
[3] C.J. Hamer, G.R.W. Quispel and M.T. Batchelor, Conformal anomaly and surface energy for Potts and Ashkin-Teller quantum chains, J. Phys.20 (1987) 5677 [INSPIRE].
[4] P.A. Pearce and A. Kluemper, Finite size corrections and scaling dimensions of solvable lattice models: an analytic method, Phys. Rev. Lett.66 (1991) 974 [INSPIRE]. · Zbl 0968.82508
[5] C. Destri and H.J. De Vega, Unified approach to thermodynamic Bethe Ansatz and finite size corrections for lattice models and field theories, Nucl. Phys. B438 (1995) 413 [hep-th/9407117] [INSPIRE]. · Zbl 1052.82529
[6] E. Granet, J.L. Jacobsen and H. Saleur, A distribution approach to finite-size corrections in Bethe Ansatz solvable models, Nucl. Phys. B934 (2018) 96 [arXiv:1801.05676] [INSPIRE]. · Zbl 1395.82068
[7] J. Lykke Jacobsen, Y. Jiang and Y. Zhang, Torus partition function of the six-vertex model from algebraic geometry, JHEP03 (2019) 152 [arXiv:1812.00447] [INSPIRE]. · Zbl 1414.81177
[8] C. Marboe and D. Volin, Fast analytic solver of rational Bethe equations, J. Phys. A50 (2017) 204002 [arXiv:1608.06504] [INSPIRE]. · Zbl 1367.81081
[9] Y. Jiang and Y. Zhang, Algebraic geometry and Bethe ansatz. Part I. The quotient ring for BAE, JHEP03 (2018) 087 [arXiv:1710.04693] [INSPIRE]. · Zbl 1388.81440
[10] A.L. Owczarek and R.J. Baxter, Surface free energy of the critical six-vertex model with free boundaries, J. Phys. A22 (1989) 1141.
[11] E.K. Sklyanin, Boundary conditions for integrable quantum systems, J. Phys.21 (1988) 2375 [INSPIRE]. · Zbl 0685.58058
[12] C. Destri and H.J. de Vega, Bethe-Ansatz and quantum groups: the light cone lattice approach. 1. Six vertex and SOS models, Nucl. Phys. B374 (1992) 692 [INSPIRE]. · Zbl 0992.82505
[13] C.M. Yung and M.T. Batchelor, Integrable vertex and loop models on the square lattice with open boundaries via reflection matrices, Nucl. Phys. B435 (1995) 430 [hep-th/9410042] [INSPIRE]. · Zbl 1020.82572
[14] S. Beraha, J. Kahane and N.J. Weiss, Limits of zeroes of recursively defined polynomials, Proc. Natl. Acad. Sci.72 (1975) 4209. · Zbl 0315.30003
[15] A.M. Gainutdinov, W. Hao, R.I. Nepomechie and A.J. Sommese, Counting solutions of the Bethe equations of the quantum group invariant open XXZ chain at roots of unity, J. Phys.48 (2015) 494003 [arXiv:1505.02104] [INSPIRE]. · Zbl 1341.82022
[16] R.I. Nepomechie and C. Wang, Algebraic Bethe ansatz for singular solutions, J. Phys. A46 (2013) 325002 [arXiv:1304.7978] [INSPIRE]. · Zbl 1276.82010
[17] E. Granet and J.L. Jacobsen, On zero-remainder conditions in the Bethe ansatz, JHEP03 (2020) 178 [arXiv:1910.07797] [INSPIRE]. · Zbl 1435.81144
[18] Z. Bajnok, E. Granet, J.L. Jacobsen and R.I. Nepomechie, On Generalized Q-systems, JHEP03 (2020) 177 [arXiv:1910.07805] [INSPIRE]. · Zbl 1435.81142
[19] D. Cox, J. Little and D. O’Shea, Using algebraic geometry, Springer, Germany (1998). · Zbl 0920.13026
[20] D. Cox, J. Little, and D. O’Shea, Ideals, varieties, and algorithms, Springer, Germany (2007). · Zbl 1118.13001
[21] M. Gaudin, B.M. McCoy and T.T. Wu, Normalization sum for the Bethe’s hypothesis wave functions of the Heisenberg-Ising chain, Phys. Rev. D23 (1981) 417.
[22] V.E. Korepin, Calculation of norms of Bethe wave functions, Commun. Math. Phys.86 (1982) 391 [INSPIRE]. · Zbl 0531.60096
[23] B. Pozsgay, Overlaps between eigenstates of the XXZ spin-1/2 chain and a class of simple product states, J. Stat. Mech.06 (2014) P06011 [arXiv:1309.4593]. · Zbl 1456.82313
[24] M. Brockmann, J. De Nardis, B. Wouters and J.S. Caux, A Gaudin-like determinant for overlaps of Neel and XXZ Bethe states, J. Phys. A47 (2014) 145003 [arXiv:1401.2877]. · Zbl 1290.82003
[25] M. Brockmann, J. De Nardis, B. Wouters and J.S. Caux, Neel-XXZ state overlaps: odd particle numbers and Lieb-Liniger scaling limit, J. Phys. A47 (2014) 345003 [arXiv:1403.7469]. · Zbl 1301.81079
[26] L. Piroli, B. Pozsgay and E. Vernier, What is an integrable quench?, Nucl. Phys. B925 (2017) 362 [arXiv:1709.04796] [INSPIRE]. · Zbl 1375.81191
[27] B. Pozsgay and O. R´akos, Exact boundary free energy of the open XXZ chain with arbitrary boundary conditions, J. Stat. Mech.1811 (2018) 113102 [arXiv:1804.09992] [INSPIRE]. · Zbl 1457.82041
[28] M. de Leeuw, C. Kristjansen and K. Zarembo, One-point functions in defect CFT and integrability, JHEP08 (2015) 098 [arXiv:1506.06958] [INSPIRE]. · Zbl 1388.81228
[29] I. Buhl-Mortensen, M. de Leeuw, C. Kristjansen and K. Zarembo, One-point Functions in AdS/dCFT from matrix product states, JHEP02 (2016) 052 [arXiv:1512.02532] [INSPIRE]. · Zbl 1388.81499
[30] M. de Leeuw, C. Kristjansen and S. Mori, AdS/dCFT one-point functions of the SU(3) sector, Phys. Lett. B763 (2016) 197 [arXiv:1607.03123] [INSPIRE]. · Zbl 1370.81150
[31] O. Tsuchiya, Determinant formula for the six-vertex model with reflecting end, J. Math. Phys.39 (1998) 5946 [solv-int/9804010]. · Zbl 0938.82007
[32] K.K. Kozlowski and B. Pozsgay, Surface free energy of the open XXZ spin-1/2 chain, J. Stat. Mech.1205 (2012) P05021 [arXiv:1201.5884] [INSPIRE]. · Zbl 1456.82283
[33] V. Pasquier and H. Saleur, Common structures between finite systems and conformal field theories through quantum groups, Nucl. Phys. B330 (1990) 523 [INSPIRE].
[34] C.N. Yang and T.D. Lee, Statistical theory of equations of state and phase transitions. I. Theory of condensation, Phys. Rev.87 (1952) 404. · Zbl 0048.43305
[35] M. Fisher, The nature of critical points, in Lecture notes in theoretical physics, W. Brittin, ed., University of Colorado Press, Boulder U.S.A. (1965).
[36] J. Salas and A.D. Sokal, Transfer matrices and partition-function zeros for antiferromagnetic Potts models. I. General theory and square-lattice chromatic polynomial, J. Stat. Phys.104 (2001) 609 [cond-mat/0004330]. · Zbl 1100.82509
[37] J.L. Jacobsen and J. Salas, Transfer matrices and partition-function zeros for antiferromagnetic Potts models. II. Extended results for square-lattice chromatic polynomial, J. Stat. Phys.104 (2001) 701 [cond-mat/0011456]. · Zbl 1100.82506
[38] J.L. Jacobsen, J. Salas, and A. D. Sokal, Transfer matrices and partition-function zeros for antiferromagnetic Potts models. III. Triangular-lattice chromatic polynomial, J. Stat. Phys.112 (2003) 921 [cond-mat/0204587]. · Zbl 1118.82303
[39] J.L. Jacobsen and J. Salas, Transfer matrices and partition-function zeros for antiferromagnetic Potts models. IV. Chromatic polynomial with cyclic boundary conditions, J. Stat. Phys.122 (2006) 705 [cond-mat/0407444]. · Zbl 1149.82007
[40] J.L. Jacobsen and J. Salas, Phase diagram of the chromatic polynomial on a torus, Nucl. Phys. B783 (2007) 238 [cond-mat/0703228] [INSPIRE]. · Zbl 1150.82006
[41] J.L. Jacobsen and J. Salas, A generalized Beraha conjecture for non-planar graphs, Nucl. Phys. B875 (2013) 678 [arXiv:1303.5210] [INSPIRE]. · Zbl 1331.82012
[42] J.L. Jacobsen, J. Salas and C.R. Scullard, Phase diagram of the triangular-lattice Potts antiferromagnet, J. Phys. A50 (2017) 345002 [arXiv:1702.02006]. · Zbl 1376.82018
[43] C. Itzykson and J.M.D. Drouffe, Statistical field theory. Volume 1: from Brownian Motion to Renormalization and Lattice Gauge Theory, Cambridge University Press, Cambridge U.K. (1991). · Zbl 0825.81002
[44] H. Saleur and M. Bauer, On some relations between local height probabilities and conformal invariance, Nucl. Phys. B320 (1989) 591 [INSPIRE].
[45] J.-F. Richard and J.L. Jacobsen, Character decomposition of Potts model partition functions, I: cyclic geometry, Nucl. Phys. B750 (2006) 250 [math-ph/0605016] [INSPIRE]. · Zbl 1215.82018
[46] D. A. Bini and G. Fiorentino, Design, analysis, and implementation of a multiprecision polynomial rootfinder, Numer. Alg.23 (2000) 127. · Zbl 1018.65061
[47] D.A. Bini and L. Robol, Solving secular and polynomial equations: a multiprecision algorithm, J. Comp. Appl. Math.272 (2015) 276. · Zbl 1310.65052
[48] L. W. Ehrlich, A modified Newton method for polynomials, Comm. A.C.M.10 (1967) 107. · Zbl 0148.39004
[49] O. Aberth, Iteration methods for finding all zeros of a polynomial simultaneously, Math. Comp.27 (1973) 339. · Zbl 0282.65037
[50] S.C. Chang, J.L. Jacobsen, J. Salas and R. Shrock, Exact Potts model partition functions for strips of the triangular lattice, J. Stat. Phys.114 (2004) 763. · Zbl 1061.82009
[51] R.I. Nepomechie, Q-systems with boundary parameters, arXiv:1912.12702 [INSPIRE].
[52] B. Buchberger, A theoretical basis for the reduction of polynomials to canonical forms, SIGSAM Bull.10 (1976) 19.
[53] J.-C. Faug̀ere, A new efficient algorithm for computing Gröbner bases (F4), J. Pure Appl. Algebra139 (1999) 61. · Zbl 0930.68174
[54] W. Decker, G.M. Greuel, G. Pfister and H. Schönemann, Singular 4-1-2 — A computer algebra system for polynomial computations, http://www.singular.uni-kl.de, (2019).
[55] A. Doikou and R.I. Nepomechie, Discrete symmetries and S matrix of the XXZ chain, J. Phys. A31 (1998) L621 [hep-th/9808012] [INSPIRE]. · Zbl 0953.82012
[56] A. Doikou and R.I. Nepomechie, Parity and charge conjugation symmetries and S matrix of the XXZ chain, in Statistical physics on the eve of the twenty-first century, M. Batchelor and L. Wille eds., World Scientific, Singapore (1999), hep-th/9810034 [INSPIRE]. · Zbl 0953.82012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.