×

On the wave dispersion in microstructured solids. (English) Zbl 1442.74092

Summary: In this paper, elastic wave propagation in a one-dimensional micromorphic medium characterized by two internal variables is investigated. The evolution equations are deduced following two different approaches, namely using: (i) the balance of linear momentum and the Clausius-Duhem inequality, and (ii) an assumed Lagrangian functional (including a gyroscopic coupling) together with a variational principle. The dispersion relation is obtained and the possibility of the emerging band gaps is shown in such microstructured materials. Some numerical simulations are also performed in order to highlight the dispersive nature of the material under study.

MSC:

74J99 Waves in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Alessandroni, S.; dell’Isola, F.; Porfiri, M., A revival of electric analogs for vibrating mechanical systems aimed to their efficient control by PZT actuators, Int. J. Solids Struct., 39, 20, 5295-5324 (2002) · Zbl 1008.74523
[2] Alibert, JJ; Seppecher, P.; dell’Isola, F., Truss modular beams with deformation energy depending on higher displacement gradients, Math. Mech. Solids, 8, 1, 51-73 (2003) · Zbl 1039.74028
[3] Altenbach, H.; Eremeyev, VA, On the constitutive equations of viscoelastic micropolar plates and shells of differential type, Math. Mech. Complex Syst., 3, 3, 273-283 (2015) · Zbl 1327.74011
[4] Andrianov, IV; Bolshakov, VI; Danishevs’kyy, VV; Weichert, D., Higher order asymptotic homogenization and wave propagation in periodic composite materials, Proc. R. Soc. Lond. A Math. Phys. Eng. Sci., 464, 2093, 1181-1201 (2008) · Zbl 1153.74024
[5] Arnol’d, VI, Mathematical Methods of Classical Mechanics (2013), Berlin: Springer, Berlin
[6] Askes, H.; Metrikine, AV; Pichugin, AV; Bennett, T., Four simplified gradient elasticity models for the simulation of dispersive wave propagation, Philos. Mag., 88, 28-29, 3415-3443 (2008)
[7] Auffray, N.; dell’Isola, F.; Eremeyev, VA; Madeo, A.; Rosi, G., Analytical continuum mechanics à la Hamilton-Piola least action principle for second gradient continua and capillary fluids, Math. Mech. Solids, 20, 4, 375-417 (2015) · Zbl 1327.76008
[8] Berezovski, A.; Engelbrecht, J.; Berezovski, M., Waves in microstructured solids: a unified viewpoint of modeling, Acta Mech., 220, 1-4, 349-363 (2011) · Zbl 1284.74054
[9] Berezovski, A.; Engelbrecht, J.; Maugin, GA, Generalized thermomechanics with dual internal variables, Arch. Appl. Mech., 81, 2, 229-240 (2011) · Zbl 1271.74014
[10] Bertram, A.; Glüge, R., Gradient materials with internal constraints, Math. Mech. Complex Syst., 4, 1, 1-15 (2016) · Zbl 1333.74011
[11] Biswas, R.; Poh, LH, A micromorphic computational homogenization framework for heterogeneous materials, J. Mech. Phys. Solids, 102, 187-208 (2017)
[12] Bloch, A., XXXVIII: A new approach to the dynamics of systems with gyroscopic coupling terms, Lond. Edinb. Dublin Philos. Mag. J. Sci., 35, 244, 315-334 (1944) · Zbl 0063.00460
[13] Born, M.; Huang, K., Dynamical Theory of Crystal Lattices (1954), Oxford: Oxford University Press, Oxford · Zbl 0057.44601
[14] Boutin, C.; dell’Isola, F.; Giorgio, I.; Placidi, L., Linear pantographic sheets: asymptotic micro-macro models identification, Math. Mech. Complex Syst., 5, 2, 127-162 (2017) · Zbl 1457.74171
[15] Brillouin, L., Wave Propagation in Periodic Structures: Electric Filters and Crystal Lattices (1946), Mineola: Dover Publications, Mineola · Zbl 0063.00607
[16] Capriz, G., Continua with Microstructure (1989), Berlin: Springer, Berlin · Zbl 0676.73001
[17] Chen, W.; Fish, J., A dispersive model for wave propagation in periodic heterogeneous media based on homogenization with multiple spatial and temporal scales, Trans. ASME J. Appl. Mech., 68, 2, 153-161 (2001) · Zbl 1110.74377
[18] Crandall, SH, Dynamics of Mechanical and Electromechanical Systems (1968), New York: McGraw-Hill, New York
[19] De Masi, A.; Merola, I.; Presutti, E.; Vignaud, Y., Potts models in the continuum. Uniqueness and exponential decay in the restricted ensembles, J. Stat. Phys., 133, 2, 281-345 (2008) · Zbl 1161.82313
[20] dell’Isola, F.; Andreaus, U.; Placidi, L., At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: an underestimated and still topical contribution of Gabrio Piola, Math. Mech. Solids, 20, 8, 887-928 (2015) · Zbl 1330.74006
[21] dell’Isola, F.; Corte, AD; Giorgio, I., Higher-gradient continua: the legacy of Piola, Mindlin, Sedov and Toupin and some future research perspectives, Math. Mech. Solids, 22, 4, 852-872 (2017) · Zbl 1371.74024
[22] dell’Isola, F.; Cuomo, M.; Greco, L.; Della Corte, A., Bias extension test for pantographic sheets: numerical simulations based on second gradient shear energies, J. Eng. Math., 103, 1, 127-157 (2017) · Zbl 1390.74028
[23] dell’Isola, F., Della Corte, A., Esposito, R., Russo, L.: Some cases of unrecognized transmission of scientific knowledge: from antiquity to Gabrio Piola’s peridynamics and generalized continuum theories. In: Generalized Continua as Models for Classical and Advanced Materials, pp. 77-128. Springer (2016)
[24] dell’Isola, F.; Seppecher, P.; Della Corte, A., The postulations á la D’Alembert and á la Cauchy for higher gradient continuum theories are equivalent: a review of existing results, Proc. R. Soc. A, 471, 2183, 20150,415 (2015) · Zbl 1371.82032
[25] dell’Isola, F.; Steigmann, D.; Della Corte, A., Synthesis of fibrous complex structures: designing microstructure to deliver targeted macroscale response, Appl. Mech. Rev., 67, 6, 060,804 (2015)
[26] Duhem, P.: Sauver les phénomènes. Essai sur la notion de théorie physique de Platon à Galilée. Sozein ta phainomena (2005)
[27] Eremeyev, VA; Pietraszkiewicz, W., Material symmetry group and constitutive equations of micropolar anisotropic elastic solids, Math. Mech. Solids, 21, 2, 210-221 (2016) · Zbl 1332.74003
[28] Eringen, AC; Suhubi, ES, Nonlinear theory of simple micro-elastic solids I, Int. J. Eng. Sci., 2, 2, 189-203 (1964) · Zbl 0138.21202
[29] Eugster, Simon R.; l’Isola, Francesco, An ignored source in the foundations of continuum physics “Die Allgemeinen Ansätze der Mechanik der Kontinua” by E. Hellinger, PAMM, 17, 1, 413-414 (2017)
[30] Eugster, SR, Exegesis of the introduction and sect. I from “Fundamentals of the mechanics of continua” by E. Hellinger, ZAMM J. Appl. Math. Mech. (Z. Angew. Math. Mech.), 97, 4, 477-506 (2017)
[31] Eugster, SR, Exegesis of sect. II and III. A from “Fundamentals of the mechanics of continua” by E. Hellinger, ZAMM J. Appl. Math. Mech. (Z. Angew. Math. Mech.), 98, 1, 31-68 (2018)
[32] Eugster, SR, Exegesis of sect. III. B from “Fundamentals of the mechanics of continua” by E. Hellinger, ZAMM J. Appl. Math. Mech. (Z. Angew. Math. Mech.), 98, 1, 69-105 (2018)
[33] Fish, J.; Chen, W., Higher-order homogenization of initial/boundary-value problem, J. Eng. Mech., 127, 12, 1223-1230 (2001)
[34] Fish, J.; Kuznetsov, S., From homogenization to generalized continua, Int. J. Comput. Methods Eng. Sci. Mech., 13, 2, 77-87 (2012)
[35] Forest, S.; Sab, K., Cosserat overall modeling of heterogeneous materials, Mech. Res. Commun., 25, 4, 449-454 (1998) · Zbl 0949.74054
[36] Geers, MG; Kouznetsova, VG; Brekelmans, W., Multi-scale computational homogenization: trends and challenges, J. Comput. Appl. Math., 234, 7, 2175-2182 (2010) · Zbl 1402.74107
[37] Giorgio, I.; Culla, A.; Del Vescovo, D., Multimode vibration control using several piezoelectric transducers shunted with a multiterminal network, Arch. Appl. Mech., 79, 9, 859 (2009) · Zbl 1176.74128
[38] Giorgio, I.; Della Corte, A.; dell’Isola, F., Dynamics of 1D nonlinear pantographic continua, Nonlinear Dyn., 88, 1, 21-31 (2017)
[39] Goldstein, H., Classical Mechanics (1965), Boston, United States: Addison-Wesley, Boston, United States
[40] Grimmett, GR, Correlation inequalities for the potts model, Math. Mech. Complex Syst., 4, 3-4, 327-334 (2016) · Zbl 1357.82012
[41] Harrison, P., Modelling the forming mechanics of engineering fabrics using a mutually constrained pantographic beam and membrane mesh, Compos. A Appl. Sci. Manuf., 81, 145-157 (2016)
[42] Lagrange, JL, Mécanique Analytique (1853), Paris: Mallet-Bachelier, Paris
[43] Mariano, PM, Multifield theories in mechanics of solids, Adv. Appl. Mech., 38, 1-93 (2001)
[44] Maugin, GA, Infernal variables and dissipative structures, J. Non-equilib. Thermodyn., 15, 2, 173-192 (1990)
[45] Maugin, GA, Material Inhomogeneities in Elasticity (1993), Boca Roton: CRC Press, Boca Roton · Zbl 0797.73001
[46] Maugin, GA, On the thermomechanics of continuous media with diffusion and/or weak nonlocality, Arch. Appl. Mech., 75, 10-12, 723-738 (2006) · Zbl 1168.74305
[47] Maugin, GA, The saga of internal variables of state in continuum thermo-mechanics (1893-2013), Mech. Res. Commun., 69, 79-86 (2015)
[48] Maugin, GA; Muschik, W., Thermodynamics with internal variables. Part I. General concepts, J. Non-equilib. Thermodyn., 19, 217-249 (1994) · Zbl 0808.73006
[49] Millet, O.; Hamdouni, A.; Cimetière, A., A classification of thin plate models by asymptotic expansion of non-linear three-dimensional equilibrium equations, Int. J. Non-linear Mech., 36, 1, 165-186 (2001) · Zbl 1342.74102
[50] Milton, GW; Briane, M.; Harutyunyan, D., On the possible effective elasticity tensors of 2-dimensional and 3-dimensional printed materials, Math. Mech. Complex Syst., 5, 1, 41-94 (2017) · Zbl 1368.74053
[51] Mindlin, RD, Micro-structure in linear elasticity, Arch. Ration. Mech. Anal., 16, 1, 51-78 (1964) · Zbl 0119.40302
[52] Misra, A.; Lekszycki, T.; Giorgio, I.; Ganzosch, G.; Müller, WH; dell’Isola, F., Pantographic metamaterials show atypical Poynting effect reversal, Mech. Res. Commun., 89, 6-10 (2018)
[53] Misra, A.; Poorsolhjouy, P., Identification of higher-order elastic constants for grain assemblies based upon granular micromechanics, Math. Mech. Complex Syst., 3, 3, 285-308 (2015) · Zbl 1329.74225
[54] Mura, T., Micromechanics of Defects in Solids (1987), Berlin: Springer, Berlin
[55] Neff, P.; Ghiba, ID; Madeo, A.; Placidi, L.; Rosi, G., A unifying perspective: the relaxed linear micromorphic continuum, Continuum Mech. Thermodyn., 26, 5, 639-681 (2014) · Zbl 1341.74135
[56] Nemat-Nasser, S.; Hori, M., Micromechanics: Overall Properties of Heterogeneous Materials (1993), New York: Elsevier, New York · Zbl 0924.73006
[57] Pfeuty, P., The one-dimensional Ising model with a transverse field, Ann. Phys., 57, 1, 79-90 (1970)
[58] Porfiri, M.; dell’Isola, F.; Santini, E., Modeling and design of passive electric networks interconnecting piezoelectric transducers for distributed vibration control, Int. J. Appl. Electromagn. Mech., 21, 2, 69-87 (2005)
[59] Turco, E.; dell’Isola, F.; Cazzani, A.; Rizzi, NL, Hencky-type discrete model for pantographic structures: numerical comparison with second gradient continuum models, Z. Angew. Math. Phys., 67, 4, 85 (2016) · Zbl 1432.74158
[60] Turco, E.; Giorgio, I.; Misra, A.; dell’Isola, F., King post truss as a motif for internal structure of (meta) material with controlled elastic properties, R. Soc. Open Sci., 4, 10, 171,153 (2017)
[61] Ván, P.; Berezovski, A.; Engelbrecht, J., Internal variables and dynamic degrees of freedom, J. Non-equilib. Thermodyn., 33, 3, 235-254 (2008) · Zbl 1158.80001
[62] Vinogradov, AM; Kupershmidt, BA, The structures of Hamiltonian mechanics, Russ. Math. Surv., 32, 4, 177 (1977) · Zbl 0383.70020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.